Although our knowledge of autism spectrum disorder (ASD) has been deepened, the accurate diagnosis of ASD from normal individuals is still left behind. In this study, we proposed to apply the spatial pattern of the network topology (SPN) to identify children with ASD from normal ones. Based on two independent batches of electroencephalogram datasets collected separately, the accurate recognition of ASD from normal children was achieved by applying the proposed SPN features. Since decreased long-range connectivity was identified for children with ASD, the SPN features extracted from the distinctive topological architecture between two groups in the first dataset were used to validate the capacity of SPN in classifying ASD, and the SPN features achieved the highest accuracy of 92.31%, which outperformed the other features e.g., power spectrum density (84.62%), network properties (76.92%), and sample entropy (73.08%). Moreover, within the second dataset, by using the model trained in the first dataset, the SPN also acquired the highest sensitivity in recognizing ASD, when compared to the other features. These results consistently illustrated that the functional brain network, especially the intrinsic spatial network topology, might be the potential biomarker for the diagnosis of ASD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143134 | PMC |
http://dx.doi.org/10.1007/s11571-023-09962-y | DOI Listing |
Front Pharmacol
January 2025
MOE Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.
Introduction: Neuroimaging studies have demonstrated that intranasal oxytocin has extensive effects on the resting state functional connectivity of social and emotional processing networks and may have therapeutic potential. However, the extent to which intranasal oxytocin modulates functional connectivity network topology remains less explored, with inconsistent findings in the existing literature. To address this gap, we conducted an exploratory data-driven study.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Limerick, Chemical Sciences, IRELAND.
Guest transport through discrete voids (closed pores) in crystalline solids is poorly understood. Herein, we report the gas sorption properties of a nonporous coordination network, [Co(bib)2Cl2]n·2MeOH (sql-bib-Co-Cl-α), featuring square lattice (sql) topology and the bent linker 1,3-bis(1H-imidazol-1-yl)benzene (bib). The as-synthesized sql-bib-Co-Cl-α has 11.
View Article and Find Full Text PDFNat Chem
January 2025
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.
The properties and functions of metal-organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking.
View Article and Find Full Text PDFBioinformatics
January 2025
College of Artificial Intelligence, Nankai University, Tianjin, 300350, China.
Motivation: The drug-disease, gene-disease, and drug-gene relationships, as high-frequency edge types, describe complex biological processes within the biomedical knowledge graph. The structural patterns formed by these three edges are the graph motifs of (disease, drug, gene) triplets. Among them, the triangle is a steady and important motif structure in the network, and other various motifs different from the triangle also indicate rich semantic relationships.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!