Classification of coma/brain-death EEG dataset based on one-dimensional convolutional neural network.

Cogn Neurodyn

Graduate School of Engineering, Saitama Institute of Technology, Fusaiji 1690, Fukaya, Saitama 3690293 Japan.

Published: June 2024

AI Article Synopsis

  • EEG evaluation is crucial for diagnosing brain death in clinical settings, especially in the ICU, where noise and sedatives can interfere with accurate readings.
  • The study introduces a method using a band-pass filter and a Convolutional Neural Network (1D-CNN) for better pre-processing and classification of EEG signals, achieving a high classification accuracy of 99.71%.
  • This approach enhances the reliability of EEG analysis for coma and brain-death patients, providing a practical tool for clinicians in making informed diagnostics.

Article Abstract

Electroencephalography (EEG) evaluation is an important step in the clinical diagnosis of brain death during the standard clinical procedure. The processing of the brain-death EEG signals acquisition always carried out in the Intensive Care Unit (ICU). The electromagnetic environmental noise and prescribed sedative may erroneously suggest cerebral electrical activity, thus effecting the presentation of EEG signals. In order to accurately and efficiently assist physicians in making correct judgments, this paper presents a band-pass filter and threshold rejection-based EEG signal pre-processing method and an EEG-based coma/brain-death classification system associated with One Dimensional Convolutional Neural Network (1D-CNN) model to classify informative brain activity features from real-world recorded clinical EEG data. The experimental result shows that our method is well performed in classify the coma patients and brain-death patients with the classification accuracy of 99.71%, F1-score of 99.71% and recall score of 99.51%, which means the proposed model is well performed in the coma/brain-death EEG signals classification task. This paper provides a more straightforward and effective method for pre-processing and classifying EEG signals from coma/brain-death patients, and demonstrates the validity and reliability of the method. Considering the specificity of the condition and the complexity of the EEG acquisition environment, it presents an effective method for pre-processing real-time EEG signals in clinical diagnoses and aiding the physicians in their diagnosis, with significant implications for the choice of signal pre-processing methods in the construction of practical brain-death identification systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143104PMC
http://dx.doi.org/10.1007/s11571-023-09942-2DOI Listing

Publication Analysis

Top Keywords

eeg signals
20
eeg
10
coma/brain-death eeg
8
convolutional neural
8
neural network
8
signal pre-processing
8
well performed
8
effective method
8
method pre-processing
8
signals
5

Similar Publications

Experiencing music often entails the perception of a periodic beat. Despite being a widespread phenomenon across cultures, the nature and neural underpinnings of beat perception remain largely unknown. In the last decade, there has been a growing interest in developing methods to probe these processes, particularly to measure the extent to which beat-related information is contained in behavioral and neural responses.

View Article and Find Full Text PDF

Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand when or how humans can exploit this predictability. Here, we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that poses critical challenges in global healthcare due to its increasing prevalence and severity. Diagnosing AD and other dementias, such as frontotemporal dementia (FTD), is slow and resource-intensive, underscoring the need for automated approaches. To address this gap, this study proposes a novel deep learning methodology for EEG classification of AD, FTD, and control (CN) signals.

View Article and Find Full Text PDF

Emotion recognition is an advanced technology for understanding human behavior and psychological states, with extensive applications for mental health monitoring, human-computer interaction, and affective computing. Based on electroencephalography (EEG), the biomedical signals naturally generated by the brain, this work proposes a resource-efficient multi-entropy fusion method for classifying emotional states. First, Discrete Wavelet Transform (DWT) is applied to extract five brain rhythms, i.

View Article and Find Full Text PDF

Statistical Complexity Analysis of Sleep Stages.

Entropy (Basel)

January 2025

Departamento de Ingeniería Eléctrica y Computadoras, Instituto de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.

Studying sleep stages is crucial for understanding sleep architecture, which can help identify various health conditions, including insomnia, sleep apnea, and neurodegenerative diseases, allowing for better diagnosis and treatment interventions. In this paper, we explore the effectiveness of generalized weighted permutation entropy (GWPE) in distinguishing between different sleep stages from EEG signals. Using classification algorithms, we evaluate feature sets derived from both standard permutation entropy (PE) and GWPE to determine which set performs better in classifying sleep stages, demonstrating that GWPE significantly enhances sleep stage differentiation, particularly in identifying the transition between N1 and REM sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!