Pushing the information states' acquisition efficiency has been a long-held goal to reach the measurement precision limit inside scattering spaces. Recent studies have indicated that maximal information states can be attained through engineered modes; however, partial intrusion is generally required. While non-invasive designs have been substantially explored across diverse physical scenarios, the non-invasive acquisition of information states inside dynamic scattering spaces remains challenging due to the intractable non-unique mapping problem, particularly in the context of multi-target scenarios. Here, we establish the feasibility of non-invasive information states' acquisition experimentally for the first time by introducing a tandem-generated adversarial network framework inside dynamic scattering spaces. To illustrate the framework's efficacy, we demonstrate that efficient information states' acquisition for multi-target scenarios can achieve the Fisher information limit solely through the utilization of the external scattering matrix of the system. Our work provides insightful perspectives for precise measurements inside dynamic complex systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140760 | PMC |
http://dx.doi.org/10.34133/research.0375 | DOI Listing |
Sci Data
December 2024
Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, No. 18 Shilongshan Road, Hangzhou, 310024, China.
Thyroid nodules are a common endocrine condition with an increasing incidence over the decades. Data-independent acquisition has been widely utilized in discovery proteomics to identify disease biomarkers and therapeutic targets. To analyze the thyroid disease-related proteome in a high-throughput, reproducible and reliable manner, we introduce thyroid-specific peptide spectral libraries.
View Article and Find Full Text PDFExp Hematol Oncol
December 2024
Department of Hematologic Malignancies Translational Science, Beckman Research Institute and City of Hope National Medical Center, Duarte, CA, USA.
Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Infertility affects 10-12 % of couples worldwide, 50 % of which are male. Abnormal spermatogenesis is among the main causes of male infertility. We were curious about the possible role of transmembrane channel-like protein 7 (TMC7) in spermatogenesis because of its aberrant expression in several male infertility patients.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Medicine, Office of Medical Education Research and Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
Purpose: This study quantified the impact of clinical clerkships on medical students' disciplinary knowledge using the Comprehensive Clinical Science Examination (CCSE) as a formative assessment tool.
Methods: This study involved 155 third-year medical students in the College of Human Medicine at Michigan State University who matriculated in 2016. Disciplinary scores on their individual Comprehensive Clinical Science Examination reports were extracted by digitizing the bar charts using image processing techniques.
Anal Chem
December 2024
Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen 361005, China.
Proton (H) NMR spectroscopy presents a powerful tool for biomass mixture studies by revealing the involved chemical compounds with identified ingredients and molecular structures. However, conventional H NMR generally suffers from spectral congestion when measuring biomass mixtures, particularly biomass carbohydrate samples, that contain various physically and chemically similar compounds. In this study, a targeted detection NMR approach, DREAMTIME, is exploited for studying biomass carbohydrate mixtures by spectroscopically targeting the desired compounds in separate 1D NMR spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!