Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Suture-associated infections on surgical sites are known to be related to the surface characteristics of the sutures. The present study aimed to fabricate a novel functional suture for surgical procedures and characterize its antioxidative, antimicrobial, and in vitro wound healing properties. St John's wort, , extract (eHp), and biogenic silver nanoparticles (AgNPs) have been combined and used for coating the silk sutures. Antioxidant, antimicrobial capacity, and in vitro wound healing potential of the coated sutures have been examined. The morphological and microanalytical examination of the coated sutures was also performed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). According to the antioxidant activity tests, free radical scavenging and β-carotene linoleic acid tests revealed that the antioxidative potential of extract-AgNP combination (eHp-AgNP) at 10 mg/mL concentration was higher than those of positive controls, ascorbic acid and α-tocopherol. Coating the sutures with eHp-AgNP resulted in a remarkable inhibition activity of the sutures against , which is a pathogenic member of human microbiota. When compared with the control groups, it was investigated that coating the sutures with eHp-AgNP stimulated the cell migration of the fibroblasts to heal the artificial wound. Due to their beneficial effects, the eHp-AgNP-coated silk sutures might be a potential antibacterial and wound healing accelerator for surgical approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137723 | PMC |
http://dx.doi.org/10.1021/acsomega.3c09484 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!