A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Allosteric Modulation of Thrombin by Thrombomodulin: Insights from Logistic Regression and Statistical Analysis of Molecular Dynamics Simulations. | LitMetric

Thrombomodulin (TM), a transmembrane receptor integral to the anticoagulant pathway, governs thrombin's substrate specificity via interaction with thrombin's anion-binding exosite I. Despite its established role, the precise mechanisms underlying this regulatory function are yet to be fully unraveled. In this study, we deepen the understanding of these mechanisms through eight independent 1 μs all-atom simulations, analyzing thrombin both in its free form and when bound to TM fragments TM456 and TM56. Our investigations revealed distinct and significant conformational changes in thrombin mediated by the binding of TM56 and TM456. While TM56 predominantly influences motions within exosite I, TM456 orchestrates coordinated alterations across various loop regions, thereby unveiling a multifaceted modulatory role that extends beyond that of TM56. A highlight of our study is the identification of critical hydrogen bonds that undergo transformations during TM56 and TM456 binding, shedding light on the pivotal allosteric influence exerted by TM4 on thrombin's structural dynamics. This work offers a nuanced appreciation of TM's regulatory role in blood coagulation, paving the way for innovative approaches in the development of anticoagulant therapies and expanding the horizons in oncology therapeutics through a deeper understanding of molecular interactions in the coagulation pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137727PMC
http://dx.doi.org/10.1021/acsomega.4c03375DOI Listing

Publication Analysis

Top Keywords

tm456 tm56
8
tm56 tm456
8
tm56
5
allosteric modulation
4
modulation thrombin
4
thrombin thrombomodulin
4
thrombomodulin insights
4
insights logistic
4
logistic regression
4
regression statistical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!