Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The widespread use of malathion enhances agricultural plant productivity by eliminating pests, weeds, and diseases, but it may lead to serious environmental pollution and potential health risks for humans and animals. To mitigate these issues, environmentally friendly hydrogel adsorbents for malathion were synthesized using biodegradable polymers, specifically cellulose, β-cyclodextrin (β-CD), poly(vinyl alcohol) (PVA), and biobased epichlorohydrin as a cross-linker. This study investigated the effects of the cellulose-to-PVA ratio and epichlorohydrin (ECH) content on the properties and malathion adsorption capabilities of β-CD/cellulose/PVA hydrogels. It was found that the gel content of the hydrogels increased with a higher cellulose-to PVA and ECH ratio, whereas the swelling ratio decreased, indicating a denser structure that impedes water permeation. In addition, various parameters affecting the malathion adsorption capacity of the hydrogel, namely, contact time, pH, hydrogel dosage, initial concentration of malathion, and temperature, were studied. The hydrogel prepared with a β-CD/cellulose/PVA ratio of 20:40:40 and 9 mL of ECH exhibited the highest malathion adsorption rate and capacity, which indicated an equilibrium adsorption capacity of 656.41 mg g at an initial malathion concentration of 1000 mg L. Fourier transform infrared spectroscopy (FTIR), ζ-potential, and X-ray photoelectron spectroscopy (XPS) and NMR spectroscopy confirmed malathion adsorption within the hydrogel. The adsorption process followed intraparticle diffusion kinetics and corresponded to Freundlich isotherms, indicating multilayer adsorption on heterogeneous substrates within the adsorbent, facilitated by diffusion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11137713 | PMC |
http://dx.doi.org/10.1021/acsomega.4c00037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!