AI Article Synopsis

  • Human activities are altering the Earth's climate by changing atmospheric compositions and creating radiative forcing, which drives climate change.
  • The reduction of sulfur dioxide emissions from shipping in 2020 resulted in significant radiative forcing, potentially doubling the warming rate in the 2020s compared to previous decades.
  • This increased forcing not only correlates with the observed warming in 2023 but also impacts precipitation patterns, suggesting that marine cloud brightening could be a method for geoengineering to cool the climate, despite its challenges.

Article Abstract

Human activities affect the Earth's climate through modifying the composition of the atmosphere, which then creates radiative forcing that drives climate change. The warming effect of anthropogenic greenhouse gases has been partially balanced by the cooling effect of anthropogenic aerosols. In 2020, fuel regulations abruptly reduced the emission of sulfur dioxide from international shipping by about 80% and created an inadvertent geoengineering termination shock with global impact. Here we estimate the regulation leads to a radiative forcing of Wm averaged over the global ocean. The amount of radiative forcing could lead to a doubling (or more) of the warming rate in the 2020 s compared with the rate since 1980 with strong spatiotemporal heterogeneity. The warming effect is consistent with the recent observed strong warming in 2023 and expected to make the 2020 s anomalously warm. The forcing is equivalent in magnitude to 80% of the measured increase in planetary heat uptake since 2020. The radiative forcing also has strong hemispheric contrast, which has important implications for precipitation pattern changes. Our result suggests marine cloud brightening may be a viable geoengineering method in temporarily cooling the climate that has its unique challenges due to inherent spatiotemporal heterogeneity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139642PMC
http://dx.doi.org/10.1038/s43247-024-01442-3DOI Listing

Publication Analysis

Top Keywords

radiative forcing
16
inadvertent geoengineering
8
geoengineering termination
8
termination shock
8
spatiotemporal heterogeneity
8
radiative
5
warming
5
forcing
5
abrupt reduction
4
reduction shipping
4

Similar Publications

Unprecedented East Siberian wildfires intensify Arctic snow darkening through enhanced poleward transport of black carbon.

Sci Total Environ

January 2025

School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Summer Arctic black carbon (BC) predominantly originates from boreal wildfires, significantly contributing to Arctic warming. This study examined the impact of MODIS-detected extensive East Siberian wildfires from 2019 to 2021 on Arctic BC and the associated radiative effects using GEOS-Chem and SNICAR simulations. During these years, Arctic surface BC aerosol concentrations rose to 46 ng m, 43 ng m, and 59 ng m, nearly doubling levels from the low-fire year of 2022.

View Article and Find Full Text PDF

Growing contribution to radiative forcing from China's on-farm nitrous oxide emissions requires more attention.

Sci Total Environ

January 2025

Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton South, Melbourne, Victoria 3169, Australia; Department of Agricultural Economics, University of the Free State, Bloemfontein 9300, South Africa.

Agricultural systems are important emission sources of non-CO greenhouse gases (GHGs), including the relatively short-lived GHG methane (CH). As a pivotal emitter, China's CH emissions have received wide attention. For the first time, this study applied an indicator of radiative forcing-based climate footprint (RFCF) to compare the climate impacts of China's on-farm non-CO GHG emissions including CH and nitrous oxide (NO).

View Article and Find Full Text PDF

The 1831 CE mystery eruption identified as Zavaritskii caldera, Simushir Island (Kurils).

Proc Natl Acad Sci U S A

January 2025

Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.

Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.

View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

Mechanosensitive stacking structure with continuous solar controllability for real-time thermal management.

Mater Horiz

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

Adaptive control of solar light based on an optical switching strategy is essential to tune thermal gain, while real-time solar regulation and hence on-demand thermal management coupled with dynamic conditions still faces a formidable challenge. Herein, we develop a stacking structure which is mechanosensitive and can be finely tuned depending on the dynamic cavitation effect. Specifically, the stacking structure transfers from a solid monolith state to porous layered state progressively under mechanical stretching, and the resulting porous layered state gradually goes back to the solid monolith state once the load is released.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!