The butterfly assemblage of Ladakh Trans-Himalaya demands a thorough analysis of their population genetic structure owing to their typical biogeographic affinity and their adaptability to extreme cold-desert climates. No such effort has been taken till date, and in this backdrop, we created a barcode reference library of 60 specimens representing 23 species. Barcodes were generated from freshly collected leg samples using the Sanger sequencing method, followed by phylogenetic clade analyses and divergence calculation. Our data represents 22% of Ladakh's Rhopaloceran fauna with the novel barcode submission for six species, including one Schedule II species, . Contrary to the 3% threshold rule, the interspecific divergence between two species pairs of typical mountain genus Hyponephele and Karanasa was found to be 2.3% and 2.2%, respectively. The addition of conspecific global barcodes revealed that most species showed little increase in divergence value, while a two-fold increase was noted in a few species. Bayesian clade clustering outcomes largely aligned with current morphological classifications, forming monophyletic clades of conspecific barcodes, with only minor exceptions observed for the taxonomically complicated genus and misidentified records of in the database. We also observed variations within the same phylogenetic clades forming nested lineages, which may be attributed to the taxonomic intricacies present at the subspecies level globally, mostly among Eurasian species. Overall, our effort not only substantiated the effectiveness of DNA Barcoding for the identification and conservation of this climatically vulnerable assemblage but also highlighted the significance of deciphering the unique genetic composition among this geographically isolated population of Ladakh butterflies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142357PMC
http://dx.doi.org/10.21203/rs.3.rs-4392854/v1DOI Listing

Publication Analysis

Top Keywords

dna barcoding
8
ladakh trans-himalaya
8
species
7
unique high
4
high passes
4
passes phylogenetic
4
phylogenetic inferences
4
inferences dna
4
barcoding buttery
4
buttery fauna
4

Similar Publications

Many butterfly species are conspicuous flower visitors. However, understanding their flower visitation patterns in natural habitats remains challenging due to the difficulty of tracking individual butterflies. Therefore, we aimed at establishing a protocol to solve the problem using the Common five-ring butterfly, Ypthima argus (Nymphalidae: Satyrinae).

View Article and Find Full Text PDF

Neotropical regions near the equator are recognized as speciation "hot spots" reflecting their abundant biodiversity. In western South America, the coasts of Panama, Colombia, Ecuador, the Galápagos Archipelago, and northern Peru form the Tropical Eastern Pacific biome. This area has the greatest heterogeneity of sympatric fiddler crab species of any portion of the planet.

View Article and Find Full Text PDF

Bryophytes represent a diverse and species-rich group of plants, characterized by a remarkable array of morphological variations. Due to their significant ecological and economic roles worldwide, accurate identification of bryophyte taxa is crucial. However, the variability in morphological traits often complicates their proper identification and subsequent commercial utilization.

View Article and Find Full Text PDF

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

Naturally occurring DNA inversion systems play an important role in the generation of genetic variation and adaptation in prokaryotes. Shufflon invertase (SI) from plasmid R64, recognizing asymmetric sites, has been adopted as a tool for synthetic biology. However, the availability of a single enzyme with moderate rates of recombination has hampered the more widespread use of SIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!