Unlabelled: The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive. We mechanistically classify the molecular phenotypes of six mutations. C50R, T142M, and T227M exhibit impaired citrate transport despite normal expression at the cell surface. G219R, S427L, and L488P are hampered by low protein expression, ER retention, and reduced transport. Mutants' mRNA levels resemble wildtype, suggesting post-translational defects. Class II mutations display immature core-glycosylation and shortened half-lives, indicating protein folding defects. These experiments provide a comprehensive understanding of the mutation's defects in SLC13A5 Epilepsy at the biochemical and molecular level and shed light into the trafficking pathway(s) of NaCT. The two classes of mutations will require fundamentally different treatment approaches to either restore transport function, or enable correction of protein folding defects.

Summary: Loss-of-function mutations in the SLC13A5 causes SLC13A5-Epilepsy, a devastating disease characterized by neonatal epilepsy. Currently no cure is available. We clarify the molecular-level defects to guide future developments for phenotype-specific treatment of disease-causing mutations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142175PMC
http://dx.doi.org/10.1101/2024.05.23.594637DOI Listing

Publication Analysis

Top Keywords

mutations slc13a5
12
slc13a5 epilepsy
12
molecular phenotypes
8
mutations
8
citrate uptake
8
impaired citrate
8
disease-causing mutations
8
protein folding
8
slc13a5
6
phenotypes segregate
4

Similar Publications

Early neonatal seizures have myriad causes and variable prognoses. While acute symptomatic seizures are the most common events, a significant number of cases have a genetic background for such seizures, and a timely diagnosis can help in appropriate management and prognostication. We present a case of a neonate referred to our center with multi-focal clonic seizure starting from the first day of life.

View Article and Find Full Text PDF

The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons and astrocytes. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive.

View Article and Find Full Text PDF

TESS Research Foundation (TESS) is a patient-led nonprofit organization seeking to understand the basic biology and clinical impact of pathogenic variants in the SLC13A5 gene. TESS aims to improve the fundamental understanding of citrate's role in the brain, and ultimately identify treatments and cures for the associated disease. TESS identifies, organizes, and develops collaboration between researchers, patients, clinicians, and the pharmaceutical industry to improve the lives of those suffering from SLC13A5 citrate transport disorder.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored the use of next-generation sequencing (NGS) to identify genetic variants in 55 children with childhood epilepsy of unknown origins, ultimately diagnosing about 50.9% of the cases.* -
  • Researchers found variants in 22 different epilepsy-associated genes, with significant findings related to SCN1A, ALDH7A1, and KCNQ2, which could inform targeted therapies for some patients.* -
  • The discovery of novel genetic variants enhances the understanding of the genetic factors linked to childhood epilepsy and aims to improve diagnosis and treatment strategies globally.*
View Article and Find Full Text PDF

Unlabelled: The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!