High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1- mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142256PMC
http://dx.doi.org/10.1101/2024.05.25.595865DOI Listing

Publication Analysis

Top Keywords

retrograde trafficking
20
hpv infection
12
sorting nexin
8
membrane spanning
8
virion endocytosis
8
minor capsid
8
capsid protein
8
hpv16 infection
8
trafficking
7
retrograde
6

Similar Publications

Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.

View Article and Find Full Text PDF

Axodendritic targeting of TAU and MAP2 and microtubule polarization in iPSC-derived versus SH-SY5Y-derived human neurons.

Open Life Sci

December 2024

Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.

Cell polarity is crucial in neurons, characterized by distinct axonal and dendritic structures. Neurons generally have one long axon and multiple shorter dendrites, marked by specific microtubule (MT)-associated proteins, e.g.

View Article and Find Full Text PDF

Loss-of-function variants in ATP6V0A2, encoding the trans Golgi V-ATPase subunit V0a2, cause wrinkly skin syndrome (WSS), a connective tissue disorder with glycosylation defects and aberrant cortical neuron migration. We used knock-out (Atp6v0a2) and knock-in (Atp6v0a2) mice harboring the R755Q missense mutation selectively abolishing V0a2-mediated proton transport to investigate the WSS pathomechanism. Homozygous mutants from both strains displayed a reduction of growth, dermis thickness, and elastic fiber formation compatible with WSS.

View Article and Find Full Text PDF

Protein-Variant-Phenotype Study of NBAS Using AlphaFold in the Aspect of SOPH Syndrome.

Proteins

December 2024

Research Laboratory of "Molecular Medicine and Human Genetics", Institute of Medicine, Ammosov North-Eastern Federal University, Yakutsk, Republic of Sakha (Yakutia), Russia.

NBAS gene variants cause phenotypically distinct and nonoverlapping conditions, SOPH syndrome and ILFS2. NBAS is a so-called "moonlighting" protein responsible for retrograde membrane trafficking and nonsense-mediated decay. However, its three-dimensional model and the nature of its possible interactions with other proteins have remained elusive.

View Article and Find Full Text PDF

Entrapment of lipid nanoparticles in peripheral endosomes but not lysosomes impairs intracellular trafficking and endosomal escape.

Int J Pharm

January 2025

College of Pharmacy, Dali University, No. 2 Hongsheng Road, Dali 671003, Yunnan, PR China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali 671003, Yunnan, PR China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China. Electronic address:

The uptake and intracellular trafficking of lipid nanoparticles (LNPs) along the endolysosomal pathway leading to releasing compartments is critical for delivery efficiency. How the players of the processes interact with each other to affect LNP delivery remains unclear. Here, we employed a recently developed, highly sensitive LNP labeling platform in combination with defined-state of endolysosomal activity of cells to address this outstanding question with spatiotemporal analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!