Genetic testing has become an essential component in the diagnosis and management of a wide range of clinical conditions, from cancer to developmental disorders, especially in rare Mendelian diseases. Efforts to identify rare phenotype-associated variants have predominantly focused on protein-truncating variants, while the interpretation of missense variants presents a considerable challenge. Deep learning algorithms excel in various applications across biomedical tasks, yet accurately distinguishing between pathogenic and benign genetic variants remains an elusive goal. Specifically, even the most sophisticated models encounter difficulties in accurately assessing the pathogenicity of missense variants of uncertain significance (VUS). Our investigation of AlphaMissense (AM), the latest iteration of deep learning methods for predicting the potential functional impact of missense variants and assessing gene essentiality, reveals important limitations in its ability to identify pathogenic missense variants within a rare disease cohort. Indeed, AM struggles to accurately assess the pathogenicity of variants in intrinsically disordered regions (IDRs), leading to unreliable gene-level essentiality scores for certain genes containing IDRs. This limitation highlights the challenges in applying AM faces in the context of clinical genetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142383PMC
http://dx.doi.org/10.1101/2024.05.22.24307756DOI Listing

Publication Analysis

Top Keywords

missense variants
16
deep learning
12
rare disease
8
disease cohort
8
variants
8
discordance deep
4
learning model
4
model clinical-grade
4
clinical-grade variant
4
variant pathogenicity
4

Similar Publications

Parathyroid carcinoma (PC) and atypical parathyroid tumors (APT) are incompletely understood and pose challenges in definitive diagnosis. sequence variants have recently been linked to PC and APT. Inactivating mutations in the ubiquitously expressed tumor suppressor gene, encoding folliculin, cause Birt-Hogg-Dubé syndrome (BHD), a rare tumor predisposition syndrome.

View Article and Find Full Text PDF

Backgroud: The ALMS1 gene is predominantly localized to cilia, particularly in the photoreceptor cells of the retina, auditory neurons, kidneys, and other ciliated structures. Pathogenic mutations in this gene cause Alstrom syndrome (AS), which is characterized by dilated cardiomyopathy, retinal degeneration, neurodeafness, and centripetal obesity. However, the genetic mechanism of the ALMS1 gene remains unclear.

View Article and Find Full Text PDF

Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain of the mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis as well as defects in the nucleus tractus solitarius (nTS) of the hindbrain together with respiratory failure at birth. De Mori et al.

View Article and Find Full Text PDF

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Myosin Heavy Chain Myopathy and Immune-Mediated Muscular Disorders.

Vet Clin North Am Equine Pract

January 2025

Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.

Several inflammatory myopathies have an infectious or immune-mediated basis in the horse. Myosin heavy chain myopathy is caused by a codominant missense variant in MYH1 and has 3 clinical presentations: immune-mediated myositis, calciphylaxis, and nonexertional rhabdomyolysis in Quarter Horse-related breeds. An infarctive form of purpura hemorrhagica affects numerous breeds, presenting with focal firm, painful muscle swelling, and subsequent infarction of multiple tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!