Locus coeruleus (LC)-derived norepinephrine (NE) drives network and behavioral adaptations to environmental saliencies by reconfiguring circuit connectivity, but the underlying synapse-level mechanisms are elusive. Here, we show that NE remodeling of synaptic function is independent from its binding on neuronal receptors. Instead, astrocytic adrenergic receptors and Ca dynamics fully gate the effect of NE on synapses as the astrocyte-specific deletion of adrenergic receptors and three independent astrocyte-silencing approaches all render synapses insensitive to NE. Additionally, we find that NE suppression of synaptic strength results from an ATP-derived and adenosine A1 receptor-mediated control of presynaptic efficacy. An accompanying study from Chen et al. reveals the existence of an analogous pathway in the larval zebrafish and highlights its importance to behavioral state transitions. Together, these findings fuel a new model wherein astrocytes are a core component of neuromodulatory systems and the circuit effector through which norepinephrine produces network and behavioral adaptations, challenging an 80-year-old status quo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142048 | PMC |
http://dx.doi.org/10.1101/2024.05.21.595135 | DOI Listing |
Curr HIV/AIDS Rep
January 2025
Columbia University Irving Medical School, New York, NY, USA.
Purpose: This narrative review addresses post-2020, specific, complex challenges for use of and adherence to pre-exposure prophylaxis (PrEP) for HIV prevention among out-of-treatment people who use drugs (PWUD) at syringe services programs (SSPs).
Recent Findings: The COVID-19 pandemic and its associated changes to the provision of healthcare have significantly impacted HIV prevention, especially for PWUD. Through a synthesis of literature and clinical experience, we (1) characterize the operational changes imposed by the pandemic on SSPs that shaped the current HIV prevention landscape; (2) describe three levels of current challenges for PWUD, including consumer attitudes, non-medical and medical provider attitudes, and structural and scalability barriers; (3) characterize current models for PrEP in SSPs; and (4) offer practical recommendations for HIV prevention in harm reduction programs.
Brain Struct Funct
January 2025
Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.
Physiological responses derived from audiovisual perception during assisted driving are associated with the regulation of the autonomic nervous system (ANS), especially in emergencies. However, the interaction of event-related brain activity and the ANS regulating peripheral physiological indicators (i.e.
View Article and Find Full Text PDFJ Neurol
January 2025
NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
Cognitive impairment (CI) in multiple sclerosis (MS) is only partially explained by whole-brain volume measures, but independent component analysis (ICA) can extract regional patterns of damage in grey matter (GM) or white matter (WM) that have proven more closely associated with CI. Pathology in GM and WM occurs in parallel, and so patterns can span both. This study assessed whether joint-ICA of GM and WM features better explained cognitive function compared to single-tissue ICA.
View Article and Find Full Text PDFJ Neurol
January 2025
Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.
Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.
Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.
J Neurol
January 2025
Centre for Vestibular Neurology (CVeN), Department of Brain Sciences, Charing Cross Hospital, Imperial College London, London, W6 8RF, UK.
Background: Vestibular dysfunction causing imbalance affects c. 80% of acute hospitalized traumatic brain injury (TBI) cases. Poor balance recovery is linked to worse return-to-work rates and reduced longevity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!