Costa Rica emerged from the seas as a new geological territory during the Miocene as an insular archipelago. It later became part of a continental area once it became a segment of Central America. Two dung beetle genera that colonized this new territory from South and North America, and (Coleoptera: Scarabaeidae: Scarabaeinae), are here studied, in the first analysis of a volcanic paleo-archipelago, colonized from its emergence, and then later becoming . To assess their biodiversity distribution patterns, we analyzed the effect of biogeography, ecosystem origins, and body size on their altitudinal distribution patterns in three geographic basins of Costa Rica. Based on 32 years of collecting representing more than 158,000 specimens from 1017 localities, we undertook Generalized Linear Models of the two dung beetle genera to assess the effects of biodiversity and biogeographical distribution patterns. and species ranged from 0 to 3000 m a.s.l., with an abrupt diversity decline at altitudes above 1500 m. Endemic species tended to show a higher altitudinal mean with a narrow altitudinal band distribution than non-endemic dung beetle species. Although there was a trend of decreasing species body size with the increase in altitude, such a trend depended on the distribution pattern of the species group. This possible insular-mediated endemicity mechanism has generated baffling biodiversity levels, considered the highest worldwide per unit area. Costa Rica is an expanse represented by a geographic overlap of two or more temporally disjunct areas and is not part of a natural transition zone. The effect of the insular Miocene origin of Costa Rica still pervades today, reflected by different insular syndromes shown by the dung beetle fauna. The importance of geological origins in generating biodiversity seems to have been an underrated criterion for conservation biology practices and should be considered ex officio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139973PMC
http://dx.doi.org/10.1002/ece3.11436DOI Listing

Publication Analysis

Top Keywords

dung beetle
20
costa rica
20
distribution patterns
12
coleoptera scarabaeidae
8
scarabaeidae scarabaeinae
8
miocene insular
8
beetle genera
8
body size
8
dung
5
costa
5

Similar Publications

Cold waves in the Amazon rainforest and their ecological impact.

Biol Lett

January 2025

Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany.

Cold waves crossing the Amazon rainforest are an extraordinary phenomenon likely to be affected by climate change. We here describe an extensive cold wave that occurred in June 2023 in Amazonian-Andean forests and compare environmental temperatures to experimentally measured thermal tolerances and their impact on lowland animal communities (insects and wild mammals). While we found strong reductions in activity abundance of all animal groups under the cold wave, tropical lowland animals showed thermal tolerance limits below the lowest environmental temperatures measured during the cold wave.

View Article and Find Full Text PDF

Dung Beetle algorithm is an intelligent optimization algorithm with advantages in exploitation ability. However, due to the high randomness of parameters, premature convergence and other reasons, there is an imbalance between exploration and exploitation ability, and it is easy to fall into the problem of local optimal solution. The purpose of this study is to improve the optimization performance of dung beetle algorithm and explore its engineering application value.

View Article and Find Full Text PDF

Copris are part of the Scarabaeidae family of Coleoptera. Copris are dung beetles or coprophagous beetles. These insects are called tunnelers because they excavate channels in the substrate.

View Article and Find Full Text PDF

The growth of cities is one of the main direct and indirect factors responsible for the loss of native vegetation cover. Urbanization directly affects the biological communities inhabiting forest remnants inserted in cities, compromising the maintenance of urban and natural ecosystems. By understanding the effects of landscape transformation due to urbanization, we can have insights regarding the distribution of land uses that allow a proper maintenance of the urban ecosystems.

View Article and Find Full Text PDF

Dung Beetles, Dung Burial, and Plant Growth: Four Scarabaeoid Species and Sorghum.

Insects

December 2024

Laboratoire de Biotechnologie, Conservation et Valorisation des Ressources Naturelles, Faculté des Sciences de Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, B.P. 1796 Fès-Atlas, Fez 30000, Morocco.

This study examined the impact of dung beetles on both sorghum growth and the physico-chemical properties of the soil over a two-month period. Four dung beetle species (, subsp. , , and ) were introduced into experimental setups, consisting of containers filled with sterilised clay-loam soil, with three treatment groups: [cow dung + beetles], [cow dung only], and a control group (no dung nor beetles), in order to evaluate their effects on various growth parameters, including the plant height, biomass, leaf area, and chlorophyll concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!