Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is ongoing interest in the rapid, reproducible production of 2-dimensional (2-D) transition metal dichalcogenides (TMD), such as molybdenum-based TMD (MoX), where X is a chalcogen atom such as sulphur (S), selenium (Se) or tellurium (Te), driven by their unique optical and electronic properties. Once fabricated into an atomically thin layer structure, these materials have a direct-indirect bandgap transition, strong spin-orbit coupling, and favourable electronic and mechanical strain-dependent properties which are attractive for electronics. Pulsed laser ablation in liquid (PLAL) is an economic, green alternative for synthesis of TMD. It has been shown that in the case of MoX, the chemical processes during the plasma phase of the ablation can yield the formation of multispecies, including MoO quantum dots when oxygen-containing solvents are used. Here, we introduce the formation of MoSe nanoscrolls with low oxygen content synthesized pulsed laser ablation in deep eutectic solvents (PLADES). Our results suggest that the synthesis produces a stable colloidal solution of large 2-D structures with tuneable surface charge by replacing the deep eutectic solvent (DES) with DI water. Nuclear Magnetic Resonance (NMR) results suggest that irradiating the solvent at near infrared NIR energy does not affect its chemical composition. NMR also proves that serial washing can completely remove solvent from the nanostructures. Raman shifts suggest the formation of large, thin MoSe nanosheets aided by the solvent confinement resulting from van der Waal forces and hydrogen bonds interactions between MoSe and urea. Binding energies measured by X-ray photoelectron spectroscopy (XPS) confirm MoSe-DES preference to form 1T-MoSe molybdenum oxides and 2H MoSe in DI-water. Raman and XPS findings were validated by transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Results of this work validate the use of PLADES for the synthesis of stable, crystalline, low-surface-oxygen-content colloidal MoSe nanoscrolls in scalable quantities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696816 | PMC |
http://dx.doi.org/10.1039/d4nr01466a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!