Responsive chiral optical materials have gained considerable interests from the fields of sensing, display, and optical devices. Materials that are capable of changing chiral optics under harsh conditions such as strong basic/acidic or ultrahigh temperature provides thoughts for the design of materials working at special environments, which however, are still underdeveloped. Here, a proof-of-concept design of organogel is reported that acts as matrices for thermal chiroptical switch with critical working temperature above 100 °C. The reversible solution-to-gel transition of the specific β-cyclodextrin/dimethyl formide/LiCl system is initialized at about 130 °C, when the luminophores with aggregation-induced-emission property shall be lighted up with transferred chirality from inherent chiral β-cyclodextrin. It allows for the controlled emergence of circularly polarized luminescence. This delicate design enables successful fabrication of ultrahigh temperature thermal chiroptical switch.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202400316 | DOI Listing |
ACS Appl Bio Mater
December 2024
Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
Blue-emissive nitrogen-doped chiral carbon dots (d-NCD230 and l-NCD230) exhibiting antipodal chiroptical activity, synthesized from the thermal pyrolysis of citric acid and d/l-aspartic acid in 1:2 molar ratios, have been explored as chirality-based fluorescent turn-off/on probes for the detection of Hg and l-cysteine (l-Cys). Circular dichroism (CD) spectroscopy revealed that the chiroptical activity originates from a synergy among intrinsic chirality, chiral precursors on the NCD surface, and hybridization of lower energy levels within the embedded chiral chromophore. Quantitative analysis of optical asymmetry using the Kuhn asymmetry factor () at the CD signal of 312 nm showed a higher value for d-NCD230 (1.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
A chiral liquid based on a fluorinated glutamate was designed and synthesized, exhibiting the capacity to transfer chirality to achiral components along with thermal stability in the induced chirality. Notably, the induced chiroptical signal inverted upon phase transition of fluorinated glutamate, which is attributed to alteration in the chiral arrangement.
View Article and Find Full Text PDFJACS Au
November 2024
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
The development of chiroptical molecular switches for chiral sensing, data communication, optical displays, chiral logic gates, and asymmetric catalysis is currently a vibrant frontier of science and technology. Herein, we report a practical artificial dynamic system based on a 1,2-diaxial atropisomer. Organocatalytic parallel kinetic resolution allows the divergent synthesis of two sets of stereoisomers with vicinal C-C and N-N axes from the same racemic single-axis substrates.
View Article and Find Full Text PDFChem Commun (Camb)
November 2024
School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
Nat Commun
November 2024
School of Chemical Science and Engineering, Advanced Research Institute, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China.
It remains challenging to elucidate the fundamental mechanisms behind the dynamic chirality inversion of supramolecular assemblies with pathway complexity. Herein, metal coordination driven assembly systems based on pyridyl-conjugated cholesterol (PVPCC) and metal ions (Ag or Al) are established to demonstrate pathway-directed, recyclable chirality inversion and assembly polymorphism. In the Ag(I)/PVPCC system, a competitive pathway leads Ag-Complex to form either kinetically controlled supramolecular polymer (Ag-SP I) or thermodynamically favored Ag-SP II, accompanied by reversible chiroptical inversion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!