Low adhesion of liquids on solid surfaces can be achieved with protrusions that minimize the contact area between the liquid and the solid. The wetting state where an air cushion forms under the drop is known as the Cassie-Baxter state. Surfaces where liquids form macroscopic contact angles above 150° are called superhydrophobic and superhygrophobic, if we refer to water or any liquid, respectively. The Cassie state is desirable for applications, but it is usually unstable compared to the Wenzel state, where the drop is in direct contact with the rough surface. The Cassie-to-Wenzel transition can be triggered by an increase in pressure and vibrations, but the inverse Wenzel-to-Cassie is much more difficult to observe. Here, we examine under what conditions the Wenzel-to-Cassie transition is triggered when the microscopic contact angle changes abruptly. For this, we applied a lubricant of low surface tension around drops that were in the Wenzel state on microstructured surfaces. The increase of the microscopic contact angle lifted the drop from the rough surface, when the pillar height and spacing are large and small, respectively. Numerical calculations for the drop-lubricant interface showed that the surface geometry requirements for the Wenzel-to-Cassie transition are stricter than the ones for the stability of the Cassie state. A surface geometry where the Cassie state is more stable than the Wenzel for a given Laplace pressure of the drop may not always allow the Wenzel-to-Cassie transition to take place. Therefore, the stability of the Cassie state is a necessary but insufficient condition for the inverse transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c00618 | DOI Listing |
ACS Omega
March 2025
Department of Polymer Science and Technology, Kocaeli University, 41001 Kocaeli, Turkey.
Given the environmental impact of polymers on our daily lives, the development of biodegradable polymers is becoming increasingly critical. Poly(diisobutyl glycolide)-polyglycolide (PDIBG-PGA) and poly(diisopropyl glycolide)-polyglycolide (PDIPG-PGA) copolymers, which are structurally similar to polylactic--glycolic acid (PLGA) polyesters frequently used in the field of biomaterials, were synthesized via ring-opening polymerization (ROP) of glycolide with l-diisobutyl glycolide (l-DIBG) or l-diisopropyl glycolide (l-DIPG), respectively, in various molecular weights ( : 15.5-40.
View Article and Find Full Text PDFAdv Mater
February 2025
Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Beyond its role in cultural communication, printing technology has emerged as one of the most important approaches to distributing and patterning functional materials for advanced manufacturing. In a printing process, a stamp is employed to transfer functional inks to a target surface, generating a specific pattern that exactly replicates the stamp. Through precise manipulation of different inkdrops, herein, a "one stamp, diverse patterns" printing strategy is developed and achieves deposition of varied patterns utilizing a single stamp.
View Article and Find Full Text PDFACS Omega
February 2025
School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia.
Superhydrophobic surfaces have long faced challenges in repelling low-surface-tension liquids like oil and alcohol, limiting their practical applications. Over the past few years, researchers have been actively looking for new alternatives to overcome this issue. Recently, superomniphobic surfaces have attracted significant interest due to their ability to repel both high- and low-surface-tension liquids.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, The School of Earth and Space Sciences, Peking University, Beijing 100871, China.
Superhydrophobicity is closely linked to the chemical composition and geometric characteristics of surface roughness. Building on our structural studies on water and air-water interfaces, this work aims to elucidate the mechanism underlying the wetting transition from the Wenzel to the Cassie state on a hydrophobic surface. In the Wenzel state, the grooves are filled with water, meaning that the surface roughness becomes embedded in the liquid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Superhydrophobic surfaces are considered to be an effective method for anti-icing, but passive anti-icing alone is not as effective as it should be, so it is crucial to develop effective anti-icing techniques. In this study, a photothermal anti-icing structure with multienergy barriers was designed by combining active and passive anti-icing technologies and prepared by a three-step method of laser etching, hydrothermal growth of nanostructures, and chemical modification based on the Cassie-Baxter-Wenzel transition theory. The experimental results show that the static water contact angle of the prepared surface is up to 160°, the sliding angle is less than 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!