AI Article Synopsis

  • * This study involved administering labeled forms of these acids and their hydroperoxides to mice and measuring the expired CO levels to determine catabolic rates, finding that the hydroperoxides were broken down more quickly than their corresponding fatty acids.
  • * The research suggests that during digestion, these hydroperoxides decompose into medium-chain compounds, which are then quickly absorbed by the liver and metabolized, supporting the idea that dietary lipid hydroperoxides do not enter the intestine intact but

Article Abstract

Unsaturated fatty acids, such as oleic and linoleic acids, are easily oxidized by exposure to temperature and light in the presence of air to form unsaturated fatty acid hydroperoxides as primary oxidation products. However, the catabolic rates of unsaturated fatty acid hydroperoxides in the human body remain unknown. In this study, ethyl esters of C-labeled linoleic acid (*C18:2-EE) and oleic acid (*C18:1-EE) and their hydroperoxides (*C18:2-EE-OOH and *C18:1-EE-OOH, respectively) prepared by the photo-oxidation of *C18:2-EE and *C18:1-EE, respectively, were administered to mice and their catabolic rates were determined by measuring the expired CO levels. *C18:2-EE-OOH and *C18:1-EE-OOH were β-oxidized faster than *C18:2-EE and *C18:1-EE, respectively. Notably, rapid β-oxidation of *C18:2-EE-OOH and *C18:1-EE-OOH was similar to that of medium-chain fatty acids, such as octanoic acid. Then, degradation products of C18:2-EE-OOH and C18:1-EE-OOH were analyzed under gastric conditions by gas chromatography/mass spectrometry. Major decomposition products of C18:2-EE-OOH and C18:1-EE-OOH were medium-chain compounds, such as octanoic acid ethyl ester, 9-oxo-nonanoic acid ethyl ester, and 10-oxo-8-decenoic acid ethyl esters, indicating that C18:2-EE-OOH and C18:1-EE-OOH isomers formed during photo-oxidation were decomposed under acidic conditions. These findings support previous reports that dietary lipid hydroperoxides are not absorbed into the intestine as lipid hydroperoxides but as degradation products. This is the first study to suggest that dietary lipid hydroperoxides decompose during gastric digestion to form medium-chain compounds that are directly absorbed into the liver via the portal vein and rapidly catabolized via β-oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess23236DOI Listing

Publication Analysis

Top Keywords

catabolic rates
12
acid hydroperoxides
12
unsaturated fatty
12
*c182-ee-ooh *c181-ee-ooh
12
c182-ee-ooh c181-ee-ooh
12
acid ethyl
12
lipid hydroperoxides
12
acid
9
oleic acid
8
fatty acids
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!