Comparative analysis of resting-state EEG-based multiscale entropy between schizophrenia and bipolar disorder.

Prog Neuropsychopharmacol Biol Psychiatry

Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea; Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Juhwa-ro 170, Ilsanseo-Gu, Goyang 10370, Republic of Korea. Electronic address:

Published: August 2024

AI Article Synopsis

  • This study explored brain activity in patients with schizophrenia and bipolar disorder using EEG and a method called multiscale entropy (MSE) analysis.
  • Patients with schizophrenia showed higher MSE values at larger scales compared to healthy controls and bipolar patients, while bipolar disorder patients had elevated MSE at middle scales, especially in type I.
  • The findings indicate that MSE values correlate with specific psychiatric symptoms, suggesting they could serve as potential biomarkers for understanding these mental health disorders.

Article Abstract

Background: Studies that use nonlinear methods to identify abnormal brain dynamics in patients with psychiatric disorders are limited. This study investigated brain dynamics based on EEG using multiscale entropy (MSE) analysis in patients with schizophrenia (SZ) and bipolar disorder (BD).

Methods: The eyes-closed resting-state EEG data were collected from 51 patients with SZ, 51 patients with BD, and 51 healthy controls (HCs). Patients with BD were further categorized into type I (n = 23) and type II (n = 16), and then compared with patients with SZ. A sample entropy-based MSE was evaluated from the bilateral frontal, central, and parieto-occipital regions using 30-s artifact-free EEG data for each individual. Correlation analyses of MSE values and psychiatric symptoms were performed.

Results: For patients with SZ, higher MSE values were observed at higher-scale factors (i.e., 41-70) across all regions compared with both HCs and patients with BD. Furthermore, there were positive correlations between the MSE values in the left frontal and parieto-occipital regions and PANSS scores. For patients with BD, higher MSE values were observed at middle-scale factors (i.e., 13-40) in the bilateral frontal and central regions compared with HCs. Patients with BD type I exhibited higher MSE values at higher-scale factors across all regions compared with those with BD type II. In BD type I, positive correlations were found between MSE values in all left regions and YMRS scores.

Conclusions: Patients with psychiatric disorders exhibited group-dependent MSE characteristics. These results suggest that MSE features may be useful biomarkers that reflect pathophysiological characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2024.111048DOI Listing

Publication Analysis

Top Keywords

mse values
24
hcs patients
12
higher mse
12
regions compared
12
patients
11
mse
10
multiscale entropy
8
schizophrenia bipolar
8
bipolar disorder
8
brain dynamics
8

Similar Publications

The SiC MOSFET with an integrated SBD (SBD-MOSFET) exhibits excellent performance in power electronics. However, the static and dynamic characteristics of this device are influenced by a multitude of parameters, and traditional TCAD simulation methods are often characterized by their complexity. Due to the increasing research on neural networks in recent years, such as the application of neural networks to the prediction of GaN JBS and Finfet devices, this paper considers the application of neural networks to the performance prediction of SiC MOSFET devices with an integrated SBD.

View Article and Find Full Text PDF

This study employed some machine learning (ML) techniques with Python programming to forecast the adsorption capacity of MOF adsorbents for thiophenic compounds namely benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). Five ML models were developed with the help of a dataset containing 676 rows to correlate the adsorbent features, adsorption conditions, and adsorbate characteristics to the MOF sample's sulfur adsorption capability. Among the ML approaches, MLP model achieved the best performance with a low mean squared error (MSE) of 0.

View Article and Find Full Text PDF

Energy consumption prediction using modified deep CNN-Bi LSTM with attention mechanism.

Heliyon

January 2025

Department of Software Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.

The prediction of energy consumption in households is essential due to the reliance on electrical appliances for daily activities. Accurate assessment of energy demand is crucial for effective energy generation, preventing overloads and optimizing energy storage. Traditional techniques have limitations in accuracy and error rates, necessitating advancements in prediction techniques.

View Article and Find Full Text PDF

Aim: Individuals living with schizophrenia experience significant impairments in social functioning. As a major clinical outcome, social functioning requires appropriate measurement tools that can capture its dynamic nature. Digital phenotyping, using smartphone technology to collect high volume ecologically valid data, can potentially capture these facets.

View Article and Find Full Text PDF

Background: Neurodegenerative diseases are a group of disorders characterized by progressive neuronal degeneration and death, of which Alzheimer's disease and Parkinson's disease are the most common. These diseases are closely associated with increased expression of monoamine oxidase B (MAO-B), an important enzyme that regulates neurotransmitter concentration, and its overactivity leads to oxidative stress and neurotoxicity, accelerating the progression of neurodegenerative diseases. Therefore, the development of effective MAO-B inhibitors is important for the treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!