A rapid on-line solid-phase extraction liquid chromatography high-resolution mass spectrometry (on-line SPE-LC-HRMS) method was developed to analyze 11 ultra-short and short-chain PFAS in surface water. Analytical optimization involved screening 7 chromatographic columns and 5 on-line SPE columns, as well as evaluating SPE loading conditions, filters, sample acidification, chromatographic mobile phases, and SPE loading mobile phases. The optimized method was then applied to 44 river water samples collected in Eastern Canada, including sites near airports with fire-training areas. Among the 11 targeted PFAS, the most frequently detected were trifluoroacetic acid (TFA, 4.6-220 ng/L), perfluorobutanoic acid (PFBA, 0.85-33 ng/L), perfluoropentanoic acid (PFPeA, 1.2-2100 ng/L), trifluoromethane sulfonic acid (TMS, 0.01-4.3 ng/L), and perfluorobutane sulfonic acid (PFBS, 0.07-450 ng/L). Levels of C3-C5 perfluoroalkyl carboxylic acids (PFCAs), C2-C4 perfluoroalkyl sulfonates (PFSAs) and n:3 polyfluoroalkyl acids (n = 2,3; n:3 acids) were significantly higher in water bodies near fire-training area sites compared with rivers in urban areas. In contrast, TFA, TMS, and 1:3 acid were not significantly elevated, likely reflecting atmospheric deposition or other diffuse sources for these compounds. Nontarget and suspect screening analysis revealed an abundance of other ultra-short and short-chain PFAS in AFFF-impacted water bodies. Perfluoroalkyl sulfonamides (FASA, C2, C3, and C5), perfluoroalkyl sulfonamide propanoic acids (FASA-PrA, C1-C2) and n:3 acids (n = 1, 4, and 5) were detected for the first time in environmental surface waters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173682 | DOI Listing |
Environ Pollut
December 2024
Man-Technology-Environment Research Centre, Department of Science and Technology, Örebro University, 701 82, Örebro, Sweden. Electronic address:
J Hazard Mater
December 2024
School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China.
Fluorochemical manufacturing parks (FMPs) are important point sources of per- and polyfluoroalkyl substances (PFASs) emissions to the surrounding environment. With legacy PFASs being phased-out and restricted in developed countries, China has emerged as one of the world's leading producers of PFASs. However, the occurrence and distribution patterns of PFASs emitted from FMPs in China remain poorly understood.
View Article and Find Full Text PDFNat Commun
September 2024
Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, USA.
A major challenge in per- and polyfluoroalkyl substances (PFAS) remediation has been their structural and chemical diversity, ranging from ultra-short to long-chain compounds, which amplifies the operational complexity of water treatment and purification. Here, we present an electrochemical strategy to remove PFAS from ultra-short to long-chain PFAS within a single process. A redox-polymer electrodialysis (redox-polymer ED) system leverages a water-soluble redox polymer with inexpensive nanofiltration membranes, facilitating the treatment of varied chain lengths of PFAS without membrane fouling.
View Article and Find Full Text PDFEnviron Res
November 2024
Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
SHORT: and ultra-short chain perfluoroalkyl substances (S- and US-PFAS) are alternatives for the long-chain PFAS which have been more regulated over time. They are highly mobile in the environment and can easily reach drinking water sources which can become an important human exposure route. Furthermore, there have been growing concerns about the presence of PFAS in Flanders.
View Article and Find Full Text PDFEnviron Pollut
October 2024
Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain. Electronic address:
Urban aquifers are at risk of contamination from persistent and mobile organic compounds (PMOCs), especially per- and polyfluoroalkyl substances (PFAS), which are artificial organic substances widely used across various industrial sectors. PFAS are considered toxic, mobile and persistent, and have therefore gained significant attention in environmental chemistry. Moreover, precursors could transform into more recalcitrant products under natural conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!