Vascular disease, including heart disease, stroke, and peripheral arterial disease, is one of the leading causes of death and disability and represents a significant global health issue. Since the development of human induced pluripotent stem cells (hiPSCs) in 2007, hiPSCs have provided unique and tremendous opportunities for studying human pathophysiology, disease modeling, and drug discovery in the field of regenerative medicine. In this review, we discuss vascular physiology and related diseases, the current methods for generating vascular cells (eg, endothelial cells, smooth muscle cells, and pericytes) from hiPSCs, and describe the opportunities and challenges to the clinical applications of vascular organoids, tissue-engineered blood vessels, and vessels-on-a-chip. We then explore how hiPSCs can be used to study and treat inherited vascular diseases and discuss the current challenges and future prospects. In the future, it will be essential to develop vascularized organoids or tissues that can simultaneously undergo shear stress and cyclic stretching. This development will not only increase their maturity and function but also enable effective and innovative disease modeling and drug discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260847 | PMC |
http://dx.doi.org/10.1016/j.mocell.2024.100077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!