Large language models (LLMs) have emerged as powerful tools in artificial intelligence, demonstrating remarkable capabilities in natural language processing and generation. In this article, we explore the potential applications of LLMs in enhancing cardiovascular care and research. We discuss how LLMs can be used to simplify complex medical information, improve patient-physician communication, and automate tasks such as summarising medical articles and extracting key information. In addition, we highlight the role of LLMs in categorising and analysing unstructured data, such as medical notes and test results, which could revolutionise data handling and interpretation in cardiovascular research. However, we also emphasise the limitations and challenges associated with LLMs, including potential biases, reasoning opacity, and the need for rigourous validation in medical contexts. This review provides a practical guide for cardiovascular professionals to understand and harness the power of LLMs while navigating their limitations. We conclude by discussing the future directions and implications of LLMs in transforming cardiovascular care and research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cjca.2024.05.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!