Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The evaluation of dairy cow feed efficiency using residual feed intake accounts for known energy sinks. However, behavioral traits may also contribute to the variation in feed efficiency. Our objective was to estimate the heritability and repeatability of behavioral traits and their genetic correlations with feed efficiency and its components in lactating Holstein cows. The first dataset consisted of 36,075 daily rumination and lying time records collected using a SMARTBOW ear-tag accelerometer (Zoetis, Parsippany, NJ) and 6,371 weekly feed efficiency records of 728 cows from the University of Wisconsin-Madison. The second dataset consisted of 59,155 daily activity records, measured as number of steps, recorded by pedometers (AfiAct; SAE Afikim, Kibbutz Afikim, Israel) and 8,626 weekly feed efficiency records of 635 cows from the University of Florida. Feed efficiency and its components included DMI, change in BW, metabolic BW, secreted milk energy, and residual feed intake. The statistical models included the fixed effect of cohort, lactation number, and days in milk, and the random effects of animal and permanent environment. Heritability estimates for behavioral traits using daily records were 0.19 ± 0.06 for rumination and activity, and 0.37 ± 0.07 for lying time. Repeatability estimates for behavioral traits using daily data ranged from 0.56 ± 0.02 for activity to 0.62 ± 0.01 for lying time. Both heritability and repeatability estimates were larger when weekly records instead of daily records were used. Rumination and activity had positive genetic correlations with residual feed intake (0.40 ± 0.19 and 0.31 ± 0.22, respectively) and lying time had a negative genetic correlation with this residual feed intake (-0.27 ± 0.11). These results indicate that more efficient cows tend to spend more time lying and less time active. Additionally, less efficient cows tend to eat more and therefore also tend to ruminate longer. Overall, sensor-based behavioral traits are heritable and genetically correlated with feed efficiency and its components and, therefore, they could be used as indicators to identify feed-efficient cows within the herd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2023-24526 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!