Phelligridimer A enhances the expression of mitofusin 2 and protects against cerebral ischemia/reperfusion injury.

Chem Biol Interact

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China. Electronic address:

Published: August 2024

Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play pivotal roles in the pathology of cerebral ischemia. In this study, we investigated whether phelligridimer A (PA), an active compound isolated from the medicinal and edible fungus Phellinus igniarius, ameliorates ischemic cerebral injury by restoring mitochondrial function and restricting ER stress. An in vitro cellular model of ischemic stroke-induced neuronal damage was established by exposing HT-22 neuronal cells to oxygen-glucose deprivation/reoxygenation (OGD/R). An in vivo animal model was established in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). The results showed that PA (1-10 μM) dose-dependently increased HT-22 cell viability, reduced OGD/R-induced lactate dehydrogenase release, and reversed OGD/R-induced apoptosis. PA reduced OGD/R-induced accumulation of reactive oxygen species, restored mitochondrial membrane potential, and increased ATP levels. Additionally, PA reduced the expression of the 78-kDa glucose-regulated protein (GRP78) and the phosphorylation of inositol-requiring enzyme-1α (p-IRE1α) and eukaryotic translation-initiation factor 2α (p-eIF2α). PA also inhibited the activation of the mitogen-activated protein kinase (MAPK) pathway in the OGD/R model. Moreover, treatment with PA restored the expression of mitofusin 2 (Mfn-2), a protein linking mitochondria and ER. The silencing of Mfn-2 abolished the protective effects of PA. The results from the animal study showed that PA (3-10 mg/kg) significantly reduced the volume of cerebral infarction and neurological deficits, which were accompanied by an increased level of Mfn-2, and decreased activation of the ER stress in the penumbra of the ipsilateral side after MCAO/R in rats. Taken together, these results indicate that PA counteracts cerebral ischemia-induced injury by restoring mitochondrial function and reducing ER stress. Therefore, PA might be a novel protective agent to prevent ischemia stroke-induced neuronal injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2024.111090DOI Listing

Publication Analysis

Top Keywords

expression mitofusin
8
injury restoring
8
restoring mitochondrial
8
mitochondrial function
8
stroke-induced neuronal
8
reduced ogd/r-induced
8
cerebral
6
phelligridimer enhances
4
enhances expression
4
mitofusin protects
4

Similar Publications

MFN2-mediated decrease in mitochondria-associated endoplasmic reticulum membranes contributes to sunitinib-induced endothelial dysfunction and hypertension.

J Mol Cell Cardiol

January 2025

Department of Cardiology, Harbin Medical University Cancer Hospital, NHC Key Laboratory of Cell Transplantation, Department of Cardiology, Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Institute of Metabolic Disease, Heilongjiang Academy of Medical Sciences, Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin, China. Electronic address:

Unlabelled: Treatment of cancer patients with tyrosine kinase inhibitors (TKIs) often results in hypertension, but the underlying mechanism remains unclear. This study aimed to examine the role of mitochondrial morphology and function, particularly mitochondria-associated endoplasmic reticulum membranes (MAMs), in sunitinib-induced hypertension.

Methods: Both in vitro and in vivo experiments performed to assesse reactive oxygen species (ROS), nitric oxide (NO), endothelium-dependent vasorelaxation, systemic blood pressure, and mitochondrial function in human umbilical vein endothelial cells (HUVECs) and C57BL/6 mouse aortic endothelial cells, under vehicle or sunitinib treatment condition.

View Article and Find Full Text PDF

Loss of Mfn1 but not Mfn2 enhances adipogenesis.

PLoS One

December 2024

Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.

Objective: A biallelic missense mutation in mitofusin 2 (MFN2) causes multiple symmetric lipomatosis and partial lipodystrophy, implicating disruption of mitochondrial fusion or interaction with other organelles in adipocyte differentiation, growth and/or survival. In this study, we aimed to document the impact of loss of mitofusin 1 (Mfn1) or 2 (Mfn2) on adipogenesis in cultured cells.

Methods: We characterised adipocyte differentiation of wildtype (WT), Mfn1-/- and Mfn2-/- mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes in which Mfn1 or 2 levels were reduced using siRNA.

View Article and Find Full Text PDF

Background: Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye.

Purpose: This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease.

View Article and Find Full Text PDF

The circadian clock regulates mitochondrial function and affects time-dependent metabolic responses to exercise. The present study aimed to determine the effects of aerobic exercise timing at the light-dark phase on the proteins expression of the circadian clock, mitochondrial dynamics, and, NAD-SIRT1-PPARα axis in skeletal muscle of high-fat diet-induced diabetic mice. In this experimental study, thirty male mice were randomly assigned into two groups based on time: the early light phase, ZT3, and the early dark phase, ZT15, and three groups at each time: (1) Healthy Control (HC), (2) Diabetic Control (DC), and (3) Diabetic + Exercise (DE).

View Article and Find Full Text PDF

Cellular senescence is a pivotal contributor to aging and age-related diseases. The targeted elimination of senescent cells, known as senolysis, has emerged as a promising therapeutic strategy for mitigating these conditions. Glutaminase 1 (GLS1), a key enzyme in the glutaminolysis pathway, has been implicated in various cellular senescence processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!