Background: Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation.

Methods: The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed.

Results: In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben.

Conclusions: By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2024.108763DOI Listing

Publication Analysis

Top Keywords

placental dna
12
phenols phthalates
12
differentially methylated
12
dna methylation
8
exploratory analysis
8
individual cpgs
8
candidate analysis
8
sex-stratified analysis
8
males females
8
entire cohort
8

Similar Publications

Ectopic expression of DNMT3L in human trophoblast stem cells restores features of the placental methylome.

Cell Stem Cell

December 2024

Loke Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. Electronic address:

The placental DNA methylation landscape is unique, with widespread partially methylated domains (PMDs). The placental "methylome" is conserved across mammals, a shared feature of many cancers, and extensively studied for links with pregnancy complications. Human trophoblast stem cells (hTSCs) offer exciting potential for functional studies to better understand this epigenetic feature; however, whether the hTSC epigenome recapitulates primary trophoblast remains unclear.

View Article and Find Full Text PDF

Introduction: Placental DNA methylation differences have been associated with timing in gestation and pregnancy complications. Maternal cell-free DNA (cfDNA) partly originates from the placenta and could enable the minimally invasive study of placental DNA methylation dynamics. We will for the first time longitudinally investigate cfDNA methylation during pregnancy by using Methylated DNA Sequencing (MeD-seq), which is compatible with low cfDNA levels and has an extensive genome-wide coverage.

View Article and Find Full Text PDF

Chronic arsenic exposure affects over 140 million people globally. While arsenic easily crosses the placenta, the specific mechanisms impacting placental immune cell populations and fetal health are unclear. Maternal arsenic exposure is epidemiologically linked to increased infection risk, mortality, and cancer susceptibility in offspring, emphasizing the importance of understanding placentally-mediated immune effects.

View Article and Find Full Text PDF

PEG10 is a retroelement-derived Mart-family gene that is necessary for placentation and has been implicated in neurological disease. PEG10 resembles both retrotransposon and retroviral proteins and forms virus-like particles (VLPs) that can be purified using iodixanol ultracentrifugation. It is hypothesized that formation of VLPs is crucial to the biological roles of PEG10 in reproduction and neurological health.

View Article and Find Full Text PDF

In preeclampsia (PE), impaired trophoblast proliferation and differentiation are thought to cause abnormal placentation and subsequent clinical manifestations of the disease, i.e., hypertension, proteinuria, and end-organ damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!