Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radiotherapy is a preferred treatment for brain metastases, which kills cancer cells via high doses of radiation meanwhile hardly avoiding damage to surrounding healthy cells. Therefore, the delineation of organs-at-risk (OARs) is vital in treatment planning to minimize radiation-induced toxicity. However, the following aspects make OAR delineation a challenging task: extremely imbalanced organ sizes, ambiguous boundaries, and complex anatomical structures. To alleviate these challenges, we imitate how specialized clinicians delineate OARs and present a novel cascaded multi-OAR segmentation framework, called OAR-SegNet. OAR-SegNet comprises two distinct levels of segmentation networks: an Anatomical-Prior-Guided network (APG-Net) and a Point-Cloud-Guided network (PCG-Net). Specifically, APG-Net handles segmentation for all organs, where multi-view segmentation modules and a deep prior loss are designed under the guidance of prior knowledge. After APG-Net, PCG-Net refines small organs through the mini-segmentation and the point-cloud alignment heads. The mini-segmentation head is further equipped with the deep prior feature. Extensive experiments were conducted to demonstrate the superior performance of the proposed method compared to other state-of-the-art medical segmentation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!