Autotrophic microorganisms play a crucial role in soil CO assimilation. Although microplastic pollution is recognized as a significant global concern, its precise impact on carbon sequestration by autotrophic microorganisms in agroecosystem soil remains poorly understood. This study conducted microcosm experiments to explore how conventional polystyrene (PS) and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) microplastics affect carbon fixation rates (CFRs) and the community characteristics of soil autotrophic microorganisms in paddy agroecosystems. The results showed that compared with the control groups, 0.5 % and 1 % microplastic treatments significantly reduced soil CFRs by 11.8 - 24.5 % and 18.7 - 32.3 %, respectively. PS microplastics exerted a stronger inhibition effect on CFRs than PHBV microplastics in bulk soil. However, no significant difference was observed in the inhibition of CFRs by both types of microplastics in rhizosphere soils. Additionally, PS and PHBV microplastics altered the structure of autotrophic microbial communities, resulting in more stochastically dominated assembly and looser, more fragile coexistence networks compared to control groups. Moreover, microplastics drove the changes in autotrophic microbial carbon fixation primarily through their direct interference and the indirect effect by increasing soil organic carbon levels. Our findings enhance the understanding and predictive capabilities regarding the impacts of microplastic pollution on carbon sinks in agricultural soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134783 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!