Background: Molecular characterization has significantly improved the management of advanced endometrial cancer (EC). It distinguishes four molecular subclasses associated with prognosis and personalized therapeutic strategies. This study assesses the clinical utility of cell-free DNA (cfDNA) profiling in EC to identify targetable alterations.

Methods: Women with metastatic or recurrent EC were prospectively recruited within the framework of the STING trial (NCT04932525), during which cfDNA was analyzed. Genomic alterations were identified with the FoundationOne CDx assay. Each molecular report underwent review by a molecular tumor board. Alterations were categorized via the European Society of Medical Oncology Scale for Clinical Actionability of Molecular Targets (ESCAT).

Results: A total of 61 patients were enrolled. The median age was 66.9 years, with 43% presenting frontline metastatic disease. All histologic subgroups were represented. Notably, 89% of patients yielded informative cfDNA analysis. Six tumors were classified with deficient mismatch repair/microsatellite instability (11%) and 37 as TP53 gene mutant (67%), and 12 had nonspecific molecular profiles (22%). Molecular classification based on liquid biopsy showed 87.5% accuracy in correlating with tissue results. Moreover, 65% of cases exhibited ≥1 actionable alteration, including 25% ESCAT I alterations and 13% ESCAT II alterations. Consequently, 16% of patients received a molecularly matched therapy, and presented with a 56% response rate and median progression-free survival of 7.7 months.

Conclusions: cfDNA sequencing in EC is a feasible approach that produces informative results in 89% of cases and accurately categorizes patients into the main molecular subclasses. It also reveals multiple actionable alterations, which offers the potential for personalized therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cncr.35381DOI Listing

Publication Analysis

Top Keywords

molecular
9
clinical utility
8
advanced endometrial
8
endometrial cancer
8
molecular subclasses
8
personalized therapeutic
8
therapeutic strategies
8
escat alterations
8
patients
5
alterations
5

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Alpha/beta values in pediatric medulloblastoma: implications for tailored approaches in radiation oncology.

Radiat Oncol

January 2025

Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.

Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!