Using dielectric deflective metasurfaces, we propose a novel, to the best of our knowledge, out-of-plane modulation scheme to realize vertical coupling on a 220 nm silicon-on-insulator platform. The metasurface is used to deflect vertical incident light to an oblique angle with high efficiency in the cladding layer. This deflection introduces a lateral wave vector component, thus preventing bi-directional transmission of traditional vertical coupling due to the second-order Bragg reflection of the grating. Additionally, an apodized design is employed for the subwavelength grating to improve mode matching with a deflection angle incident. The integration of the metasurface and subwavelength grating enables a new vertical coupling scheme with high efficiency. After global optimization, we achieved a simulation coupling efficiency of -2.19 dB. The measured coupling efficiency is -3.36 dB with a center wavelength of 1545.6 nm and a 1-dB bandwidth of 32 nm. The results confirm the feasibility of the proposed new architecture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.524721 | DOI Listing |
In order to understand the spatial distribution, influencing factors, pollution level and sources of heavy metals in black soil profiles in Northeast China, black soil profile samples were collected from five sampling points in Haicheng City, Liaoning Province, with the deepest profile depth of 50m. The contents of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in soil at different depths were analyzed, and the distribution characteristics and influencing factors of heavy metals in black soil profiles were analyzed. The pollution level of heavy metals in soil was evaluated based on the geo-accumulation index method and enrichment factor method, and the sources of heavy metals in soil were analyzed based on principal component analysis.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA.
The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size-extensivity (MR-CISD+Q and MR-CISD) and averaged quadratic coupled cluster theory (MR-AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc-pVDZ and cc-pVTZ basis sets.
View Article and Find Full Text PDFToxics
January 2025
Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
In April 2023, a major dust storm event in Lanzhou attracted widespread attention. This study provides a comprehensive analysis of the causes, progression, and dust sources of this event using multiple data sources and methods. Backward trajectory analysis using the HYSPLIT model was employed to trace the origins of the dust, while FY-2H satellite data provided high-resolution dust distribution patterns.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany.
Inverse design via topology optimization has led to innovations in integrated photonics and offers a promising way for designing high-efficiency on-chip couplers with a minimal footprint. In this work, we exploit topology optimization to design a compact vertical coupler incorporating a bottom reflector, which achieves sub-decibel coupling efficiency on the 220-nm silicon-on-insulator platform. The final design of the vertical coupler yields a predicted coupling efficiency of -0.
View Article and Find Full Text PDFWater Res
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China. Electronic address:
Sulfur-siderite driven autotrophic denitrification (SSAD) has received increasing attention for nutrient removal in constructed wetlands (CWs). Nevertheless, its effectiveness in simultaneous water purification and greenhouse gases (GHGs) reduction remains obscure. In this study, three vertical flow constructed wetlands (VFCWs), filled with quartz sand (CCW), sulfur (S-CW), and sulfur-siderite mixed substrates (SS-CW), were constructed to investigate the underlying mechanisms of SSAD on water purification enhancement and GHGs reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!