Quantum state coherent frequency conversion processes-such as Bragg-scattering four-wave mixing (BSFWM)-hold promise as a flexible technique for networking heterogeneous and distant quantum systems. In this Letter, we demonstrate BSFWM within an extended (1.2-m) low-confinement silicon nitride waveguide and show that this system has the potential for near-unity frequency conversion in visible and near-visible wavelength ranges. Using sensitive classical heterodyne laser spectroscopy at low optical powers, we characterize the Kerr coefficient (∼1.55 Wm) and linear propagation loss (∼0.0175 dB/cm) of this non-resonant waveguide system, revealing a record-high nonlinear figure of merit (NFM = γ/α ≈ 3.85 W) for BSFWM of near-visible light in non-resonant silicon nitride waveguides. We predict how, at high yet achievable on-chip optical powers, this NFM would yield a comparatively large frequency conversion efficiency, opening the door to near-unity flexible frequency conversion without cavity enhancement and resulting bandwidth constraints.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.519793DOI Listing

Publication Analysis

Top Keywords

frequency conversion
16
silicon nitride
12
four-wave mixing
8
low-confinement silicon
8
nitride waveguides
8
waveguide system
8
optical powers
8
non-resonant bragg
4
bragg scattering
4
scattering four-wave
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!