Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Standard clinical practice to assess fetal well-being during labour utilises monitoring of the fetal heart rate (FHR) using cardiotocography. However, visual evaluation of FHR signals can result in subjective interpretations leading to inter and intra-observer disagreement. Therefore, recent studies have proposed deep-learning-based methods to interpret FHR signals and detect fetal compromise. These methods have typically focused on evaluating fixed-length FHR segments at the conclusion of labour, leaving little time for clinicians to intervene. In this study, we propose a novel FHR evaluation method using an input length invariant deep learning model (FHR-LINet) to progressively evaluate FHR as labour progresses and achieve rapid detection of fetal compromise. Using our FHR-LINet model, we obtained approximately 25% reduction in the time taken to detect fetal compromise compared to the state-of-the-art multimodal convolutional neural network while achieving 27.5%, 45.0%, 56.5% and 65.0% mean true positive rate at 5%, 10%, 15% and 20% false positive rate respectively. A diagnostic system based on our approach could potentially enable earlier intervention for fetal compromise and improve clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144251 | PMC |
http://dx.doi.org/10.1038/s41598-024-63108-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!