A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Greenhouse gas fluxes of different land uses in mangrove ecosystem of East Kalimantan, Indonesia. | LitMetric

Greenhouse gas fluxes of different land uses in mangrove ecosystem of East Kalimantan, Indonesia.

Carbon Balance Manag

Yayasan Konservasi Alam Nusantara, Graha Iskandarsyah Bld, 3rd floor, Jl. Iskandarsyah Raya No.66C, Jakarta, 12160, Indonesia.

Published: June 2024

Background: Mangrove ecosystems exhibit significant carbon storage and sequestration. Its capacity to store and sequester significant amounts of carbon makes this ecosystem very important for climate change mitigation. Indonesia, owing to the largest mangrove cover in the world, has approximately 3.14 PgC stored in the mangroves, or about 33% of all carbon stored in coastal ecosystems globally. Unfortunately, our comprehensive understanding of carbon flux is hampered by the incomplete repertoire of field measurement data, especially from mangrove ecosystem-rich regions such as Indonesia and Asia Pacific. This study fills the gap in greenhouse gases (GHGs) flux studies in mangrove ecosystems in Indonesia by quantifying the soil CO and CH fluxes for different land use types in mangrove ecosystems, i.e., secondary mangrove (SM), restored mangrove (RM), pond embankment (PE) and active aquaculture pond (AP). Environmental parameters such as soil pore salinity, soil pore water pH, soil temperature, air temperature, air humidity and rainfall are also measured.

Results: GHG fluxes characteristics varied between land use types and ecological conditions. Secondary mangrove and exposed pond embankment are potential GHG flux sources (68.9 ± 7.0 and 58.5 ± 6.2 MgCOe ha yr, respectively). Aquaculture pond exhibits the lowest GHG fluxes among other land use types due to constant inundation that serve as a barrier for the release of GHG fluxes to the atmosphere. We found weak relationships between soil CO and CH fluxes and environmental parameters.

Conclusions: The data and information on GHG fluxes from different land use types in the mangrove ecosystem will be of importance to accurately assess the potential of the mangrove ecosystem to sequester and emit GHGs. This will support the GHG emission reduction target and strategy that had been set up by the Indonesian Government in its Nationally Determined Contributions (NDC) and Indonesia's 2030 Forest and Other Land Use (FOLU) Net Sink.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144335PMC
http://dx.doi.org/10.1186/s13021-024-00263-3DOI Listing

Publication Analysis

Top Keywords

fluxes land
16
land types
16
ghg fluxes
16
mangrove ecosystem
12
mangrove ecosystems
12
mangrove
11
soil fluxes
8
types mangrove
8
secondary mangrove
8
pond embankment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!