Effect of limited proteolysis and CaCl on the rheology, microstructure and in vitro digestibility of pea protein-carboxymethyl cellulose mixed gel.

Food Res Int

Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN47907, United States. Electronic address:

Published: July 2024

AI Article Synopsis

Article Abstract

Limited proteolysis, CaCl and carboxymethyl cellulose (CMC) have individually demonstrated ability to increase the gel strength of laboratory-extracted plant proteins. However, the syneresis effects of their combination on the gelling capacity of commercial plant protein remains unclear. This was investigated by measuring the rheological property, microstructure and protein-protein interactions of gels formed from Alcalase hydrolyzed or intact pea proteins in the presence of 0.1 % CMC and 0-25 mM CaCl. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular weight of pea protein in the mixture were < 15 kDa after hydrolysis. The hydrolysates showed higher intrinsic fluorescence intensity and lower surface hydrophobicity than the intact proteins. Rheology showed that the storage modulus (G') of hydrolyzed pea protein (PPH)-based gels sightly decreased compared to those of native proteins. 5-15 mM CaCl increased the G' for both PP and PPH-based gels and decreased the strain in the creep-recovery test. Scanning electron microscopy (SEM) showed the presence of smaller protein aggregates in the PPH-based gels compared to PP gels and the gel network became denser, and more compact and heterogenous in the presence of 15 and 25 mM CaCl. The gel dissociation assay revealed that hydrophobic interactions and hydrogen bonds were the dominant forces to maintain the gel structure. In vitro digestion showed that the soluble protein content in PPH-based gels was 10 ∼ 30 % higher compared to those of the PP counterpart. CaCl addition reduced protein digestibility with a concentration dependent behavior. The results obtained show contrasting effects of limited proteolysis and CaCl on the gelling capacity and digestibility of commercial pea proteins. These findings offer practical guidelines for developing pea protein-based food products with a balanced texture and protein nutrition through formulation and enzymatic pre-treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2024.114474DOI Listing

Publication Analysis

Top Keywords

limited proteolysis
8
proteolysis cacl
8
cacl rheology
4
rheology microstructure
4
microstructure vitro
4
vitro digestibility
4
digestibility pea
4
pea protein-carboxymethyl
4
protein-carboxymethyl cellulose
4
cellulose mixed
4

Similar Publications

Unleashing the Power of Covalent Drugs for Protein Degradation.

Med Res Rev

January 2025

Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.

Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions.

View Article and Find Full Text PDF

Organisms have evolved protective strategies that are geared toward limiting cellular damage and enhancing organismal survival in the face of environmental stresses, but how these protective mechanisms are coordinated remains unclear. Here, we define a requirement for neural activity in mobilizing the antioxidant defenses of the nematode both during prolonged oxidative stress and prior to its onset. We show that acetylcholine-deficient mutants are particularly vulnerable to prolonged oxidative stress.

View Article and Find Full Text PDF

Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.

View Article and Find Full Text PDF

Research Advances in Chaperone-Mediated Autophagy (CMA) and CMA-Based Protein Degraders.

J Med Chem

January 2025

Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China.

Molecular mechanisms of chaperone-mediated autophagy (CMA) constitute essential regulatory elements in cellular homeostasis, encompassing protein quality control, metabolic regulation, cellular signaling cascades, and immunological functions. Perturbations in CMA functionality have been causally associated with various pathological conditions, including neurodegenerative pathologies and neoplastic diseases. Recent advances in targeted protein degradation (TPD) methodologies have demonstrated that engineered degraders incorporating KFERQ-like motifs can facilitate lysosomal translocation and subsequent proteolysis of noncanonical substrates, offering novel therapeutic interventions for both oncological and neurodegenerative disorders.

View Article and Find Full Text PDF

Iron accumulation and mitochondrial dysfunction in astroglia are reported in Parkinson's disease (PD). Astroglia control iron availability in neurons in which dopamine (DA) synthesis is affected in PD. Despite their intimate relationship the role of DA in astroglial iron homeostasis is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!