Velocity-Load Jump Testing Predicts Acceleration Performance in Elite Speed Skaters: But Does Movement Specificity Matter?

Int J Sports Physiol Perform

Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.

Published: August 2024

Purpose: In this study, we compared the influence of movement specificity during velocity-load jump testing to predict on-ice acceleration performance in elite speed skaters.

Methods: Elite long-track speed skaters (N = 27) performed velocity-load testing with 3 external loads during unilateral horizontal jumping, lateral jumping, and bilateral vertical countermovement jumping. For the unilateral tests, external load conditions were set to 10 N, 7.5% and 15% of external load relative to body weight. For the countermovement jumping, load conditions were body weight and 30% and 60% of external load relative to body weight. On-ice performance measures were obtained during maximal 50-m accelerations from a standing start, including maximal skating speed, maximal acceleration capacity, and maximum horizontal power. The 100-m split time from a 500-m race was also obtained. Regularized regression models were used to identify the most important predictors of on-ice acceleration performance. In addition to regularized regression coefficients, Pearson correlation coefficients (r) were calculated for all variables retained by the model to assess interrelationships between single predictors and on-ice performance measures.

Results: The countermovement jump with 30% of body mass demonstrated the strongest association with maximal skating speed, maximum horizontal power, and 100-m time (regularized regression coefficient = .16-.49, r = .84-.97, P < .001). Horizontal jump with 15% of body mass was the strongest predictor of maximal acceleration capacity performance (regularized regression coefficient = .08, r = .83, P < .001).

Conclusions: The findings of this study suggest that mechanical specificity rather than movement specificity was more relevant for predicting on-ice acceleration performance.

Download full-text PDF

Source
http://dx.doi.org/10.1123/ijspp.2023-0373DOI Listing

Publication Analysis

Top Keywords

acceleration performance
16
regularized regression
16
movement specificity
12
on-ice acceleration
12
external load
12
body weight
12
velocity-load jump
8
jump testing
8
performance elite
8
elite speed
8

Similar Publications

Background: An all-inside endoscopic flexor hallucis longus (FHL) tendon transfer is indicated for the treatment of chronic, full-thickness Achilles tendon defects. The aim of this procedure is to restore function of the gastrocnemius-soleus complex while avoiding the wound complications associated with open procedures.

Description: This procedure can be performed through 2 endoscopic portals, a posteromedial portal (the working portal) and a posterolateral portal (the visualization portal).

View Article and Find Full Text PDF

Exploring Sex-Based Variations in Head Kinematics During Soccer Heading.

Ann Biomed Eng

January 2025

Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.

While studies indicate that females experience a higher concussion risk and more severe outcomes in soccer heading compared to males, comprehensive data on the underlying factors contributing to these sex-based differences are lacking. This study investigates the sex differences in the head-to-ball impact kinematics among college-aged soccer headers in a laboratory-controlled setting. Forty subjects (20 females, 20 males) performed ten headers, and impact kinematics, including peak angular acceleration and velocity (PAA, PAV) and peak linear acceleration (PLA), were measured using mouthguards.

View Article and Find Full Text PDF

Failure of the active particles is inherently electrochemo-mechanics dominated. This review comprehensively examines the electrochemo-mechanical degradation and failure mechanisms of active particles in high-energy density lithium-ion batteries. The study delves into the growth of passivating layers, such as the solid electrolyte interphase (SEI), and their impact on battery performance.

View Article and Find Full Text PDF

Susceptibility-weighted imaging (SWI) has been widely used in clinical contexts, in which the speed of acquisition is frequently a critical issue. In this study, we aim to test the feasibility of a deep learning (DL)-based reconstruction method for accelerating SWI acquisition in clinical settings. A total of 61 subjects were consecutively enrolled.

View Article and Find Full Text PDF

Purpose: The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!