Uranium as a nuclear fuel, its source and aftertreatment has been a hot topic of debate for developers. In this paper, amidoxime and guanidino-modified cotton fibers (DC-AO-PHMG) were synthesized by the two-step functionalization approach, which exhibited remarkable antimicrobial and high uranium recovery property. Adsorption tests revealed that DC-AO-PHMG had excellent selectivity and anti-interference properties, the maximum adsorption capacity of 609.75 mg/g. More than 85 % adsorption capacity could still be kept after 10 adsorption-desorption cycles, and it conformed to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model as a spontaneous heat-absorbing chemical monolayer process. FT-IR, EDS and XPS analyses speculated that the amidoxime and amino synergistically increased the uranium uptake. The inhibitory activities of DC-AO-PHMG against three aquatic bacteria, BEY, BEL (from Yellow River water and lake bottom silt, respectively) and B. subtilis were significantly stronger, and the uranium adsorption was not impacted by the high bacteria content. Most importantly, DC-AO-PHMG removed up to 94 % of uranium in simulated seawater and extracted up to 4.65 mg/g of uranium from Salt Lake water, which demonstrated its great potential in the field of uranium resource recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132776 | DOI Listing |
Int J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
The synthesis of highly efficient and environmentally friendly flame retardants through the synergistic interaction of boron, phosphorus and nitrogen is becoming a new research direction. In this study, N-DBSPA, a flame retardant with high flame retardancy, high thermal stability and high efficiency, was prepared by the reaction between pentaerythritol borate and amino trimethylene phosphate, and the limiting oxygen index (LOI) of the modified cotton fabric increased from 18 % to 44.7 % at a weight gain (WG) of 20.
View Article and Find Full Text PDFMar Environ Res
January 2025
College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai, China.
Highly migratory pelagic sharks have the potential to serve as carriers of particle contamination in a vast three-dimensional space. We investigate the occurrence, abundance and characteristics of plastic and non-plastic particles in the scroll intestine of the blue shark (Prionace glauca), one of the most abundant pelagic shark species worldwide. We detected both plastic and non-plastic particles in all sections of the intestine, with the posterior region exhibiting the highest concentration.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Agricultural College, Shihezi University, Shihezi 832003, China.
Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is a paucity of literature reporting on the members of MYCs and how they respond to biotic stresses in cotton.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
College of Life Sciences, Shaanxi Normal University, Xi'an, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!