Due to the uniqueness and essentiality of MEP pathway for the synthesis of crucial metabolites- isoprenoids, hopanoids, menaquinone etc. in mycobacterium, enzymes of this pathway are considered promising anti-tubercular drug targets. In the present study we seek to understand the consequences of downregulation of three of the essential genes- DXS, IspD, and IspF of MEP pathway using CRISPRi approach combined with transcriptomics in Mycobacterium smegmatis. Conditional knock down of either DXS or IspD or IspF gene showed strong bactericidal effect and a profound change in colony morphology. Impaired MEP pathway due to downregulation of these genes increased the susceptibility to frontline anti-tubercular drugs. Further, reduced EtBr accumulation in all the knock down strains in the presence and absence of efflux inhibitor indicated altered cell wall topology. Subsequently, transcriptional analysis validated by qRT-PCR of +154DXS, +128IspD, +104IspF strains showed that modifying the expression of these MEP pathway enzymes affects the regulation of mycobacterial core components. Among the DEGs, expression of small and large ribosomal binding proteins (rpsL, rpsJ, rplN, rplX, rplM, rplS, etc), essential protein translocases (secE, secY and infA, infC), transcriptional regulator (CarD and SigB) and metabolic enzymes (acpP, hydA, ald and fabD) were significantly depleted causing the bactericidal effect. However, mycobacteria survived under these damaging conditions by upregulating mostly the genes needed for the repair of DNA damage (DNA polymerase IV, dinB), synthesis of essential metabolites (serB, LeuA, atpD) and those strengthening the cell wall integrity (otsA, murA, D-alanyl-D-alanine dipeptidase etc.).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132727 | DOI Listing |
Inorg Chem
January 2025
Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
Transition metal carbonyl and transition metal dinitrogen are fundamental chemical complexes in many important biological and catalytic processes. Interestingly, binding between a transition metal (TM) atom and carbonyl or dinitrogen results in spin state change. However, no study has evaluated the spin-orbit (SO) effect along the association pathway of any TM-CO or TM-N bond.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands. Electronic address:
The enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyses the first step of the MEP pathway, a key process for isoprenoid biosynthesis in bacteria that is absent in humans, making it a promising drug target. We present the structure of Mycobacterium tuberculosis DXPS in its apo form, obtained through a soaking method that removes thiamine diphosphate (ThDP) and metals from pre-formed crystals. The apo structure had three regions with absence of electron density near the active site that are unique to the apo form of the enzyme.
View Article and Find Full Text PDFAm J Gastroenterol
January 2025
Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró (Universitat Autònoma de Barcelona), Carretera de Cirera s/n 08304, Mataró, Spain.
Background: Fecal incontinence (FI) is a prevalent condition that disproportionately impacts women. Although sphincter biomechanics are well studied, the integrity of the cortico-anal motor pathway remains elusive. We evaluated the cortico-spino-anorectal pathway in women with FI against age-matched (AM-HV) and young healthy (Y-HV) volunteers.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
Context: The analysis of the changes in the electronic structure along intrinsic reaction coordinate (IRC) paths for model reactions: (i) ethylene + butadiene cycloaddition, (ii) prototype SN2 reaction Cl + CH3Cl, (iii) HCN/CNH isomerization assisted by water, (iv) CO + HF → C(O)HF was performed, in terms of changes in the deformation density (Δr) and the deformation of MEP (ΔMEP). The main goal was to further examine the utility of the ΔMEP as a descriptor of chemical bonding, and to compare the pictures resulting from Δr and ΔMEP. Both approaches clearly show that the main changes in the electronic structure occur in the TS region.
View Article and Find Full Text PDFJ Med Chem
January 2025
Helmholtz Institute for Pharmaceutical Research (HIPS)-Helmholtz Centre for Infection Research (HZI), Saar-land University, Campus E8.1, 66123Saarbrücken, Germany.
Antimicrobial resistance (AMR) and herbicide resistance pose threats to society, necessitating novel anti-infectives and herbicides exploiting untapped modes of action like inhibition of IspD, the third enzyme in the MEP pathway. The MEP pathway is essential for a wide variety of human pathogens, including , , and as well as plants. Within the current perspective, we focused our attention on the third enzyme in this pathway, IspD, offering a comprehensive summary of the reported modes of inhibition and common trends, with the goal to inspire future research dedicated to this underexplored target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!