Intestinal lysozyme engagement of Salmonella Typhimurium stimulates the release of barrier-impairing InvE and Lpp1.

J Biol Chem

Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology, and Neuroscience, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA. Electronic address:

Published: July 2024

Lysozyme is a β-1,4-glycosidase that hydrolyzes the polysaccharide backbone of bacterial cell walls. With an additional bactericidal function mediated by a separate protein domain, lysozyme is considered a uniquely important antimicrobial molecule contributing to the host's innate immune response to infection. Elevated lysozyme production is found in various inflammatory conditions while patients with genetic risks for inflammatory bowel diseases demonstrate abnormal lysozyme expression, granule packaging, and secretion in Paneth cells. However, it remains unclear how a gain- or loss-of-function in host lysozyme may impact the host inflammatory responses to pathogenic infection. We challenged Lyz1 and ectopic Lyz1-expressing (Villin-Lyz1) mice with S. Typhimurium and then comprehensively assessed the inflammatory disease progression. We conducted proteomics analysis to identify molecules derived from human lysozyme-mediated processing of live Salmonella. We examined the barrier-impairing effects of these identified molecules in human intestinal epithelial cell monolayer and enteroids. Lyz1 mice are protected from infection in terms of morbidity, mortality, and barrier integrity, whereas Villin-Lyz1 mice demonstrate exacerbated infection and inflammation. The growth and invasion of Salmonella in vitro are not affected by human or chicken lysozyme, whereas lysozyme encountering of live Salmonella stimulates the release of barrier-disrupting factors, InvE-sipC and Lpp1, which directly or indirectly impair the tight junctions. The direct engagement of host intestinal lysozyme with an enteric pathogen such as Salmonella promotes the release of virulence factors that are barrier-impairing and pro-inflammatory. Controlling lysozyme function may help alleviate the inflammatory progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255904PMC
http://dx.doi.org/10.1016/j.jbc.2024.107424DOI Listing

Publication Analysis

Top Keywords

lysozyme
9
intestinal lysozyme
8
stimulates release
8
villin-lyz1 mice
8
live salmonella
8
salmonella
5
inflammatory
5
lysozyme engagement
4
engagement salmonella
4
salmonella typhimurium
4

Similar Publications

It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127).

View Article and Find Full Text PDF

Amyloid fibrils have recently emerged as promising building blocks for functional materials due to their exceptional physicochemical stability and adaptable properties. These protein-based structures can be functionalized to create hybrid materials with a diverse range of applications. Here we report a simple eco-friendly protocol for generating amyloid fibrils from hen egg white lysozyme decorated with gold nanoparticles that can self-assemble in a hydrogel.

View Article and Find Full Text PDF

The dynamics and functionality of proteins are significantly influenced by their interaction with water. For lyophilised ( ≤ 0.05 where = g of HO per g of protein) and weakly hydrated systems ( ≤ 0.

View Article and Find Full Text PDF

Protein crystallization is essential for determining the three-dimensional structures of biomacromolecules and advancing biopharmaceutical development, yet it remains a major challenge in structural biology due to common issues like slow nucleation rates and inconsistent crystal quality. Herein, a dual-drive crystallization (DDC) strategy, relying on a composite film of sodium alginate (SA) and hyaluronic acid (HA), is reported to synergistically regulate both protein adsorption and solution supersaturation. Driven by the electrostatic interactions of SA and the water absorption properties of HA, the SA/HA film achieves enhanced crystallization efficiency and controlled crystal quality mainly.

View Article and Find Full Text PDF

SIGIRR plays a dual role in zebrafish infected with Edwardsiella piscicida: boosting digestive system wellness and mitigating inflammation.

Fish Shellfish Immunol

December 2024

Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China. Electronic address:

Single immunoglobulin interleukin-1 receptor-associated protein (SIGIRR) negatively regulates the inflammatory response induced by bacterial infection by inhibiting the excessive synthesis of inflammatory mediators and overactivation. This inhibitory mechanism reduces the fish's susceptibility to pathogens and enhances survival rates. Zebrafish lacking the SIGIRR gene were generated using CRISPR/Cas9 gene knockout technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!