The presence of harmful substances such as dyes in water systems poses a direct threat to the quality of people's lives and other organisms living in the ecosystem. Orange G (OG) is considered a hazardous dye. The existing paper attempts to evaluate a low-cost adsorbent for the effective removal of OG dye. The developed adsorbent Polyaniline@Hydroxyapatite extracted from Cilus Gilberti fish Scale (PANI@FHAP) was elaborated through the application of the in situ chemical polymerization method to incorporate PANI on the surface of naturally extracted hydroxyapatite FHAP. The good synthesis of PANI@FHAP was evaluated through multiple techniques including X-ray diffraction (XRD), Scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM/EDS), Fourier Transforms Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) coupled with thermal differential analysis (DTA) analysis. The results reveal a highly ordered disposition of PANI chains on FHAP, resulting in a well-coated FHAP in the PANI matrix. Furthermore, the presence of functional groups on the surface of PANI such as amine (-NH) and imine (=NH) groups would facilitate the removal of OG dye from contaminated water. The adsorption of OG onto PANI@FHAP was conducted in batch mode and optimized through response surface methodology coupled with box-Behnken design (RSM/BBD) to investigate the effect of time, adsorbent dose, and initial concentration. The outcomes proved that OG adsorption follows a quadratic model (R = 0.989). The kinetic study revealed that the adsorption of OG fits the pseudo-second-order model. On the other hand, the isotherm study declared that the Freundlich model is best suited to the description of OG adsorption. For thermodynamic study, the adsorption of OG is spontaneous in nature and exothermic. Furthermore, the regeneration-reusability study indicates that PANI@FHAP could be regenerated and reused up to five successive cycles. Based on the FTIR spectrum of PANI@FHAP after OG adsorption, the mechanism governing OG adsorption is predominantly driven by π-π interaction, electrostatic interaction, and hydrogen bonding interactions. The obtained results suppose that PANI@FHAP adsorbent can be a competitive material in large-scale applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119289DOI Listing

Publication Analysis

Top Keywords

removal dye
12
adsorption
8
adsorption mechanism
8
pani@fhap
6
eco-friendly engineering
4
engineering micro
4
micro composite-based
4
composite-based hydroxyapatite
4
hydroxyapatite bio
4
bio crystal
4

Similar Publications

Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.

View Article and Find Full Text PDF

Context: Natural fluorapatite (FAP) has been investigated as an adsorbent for the removal of dyes such as methylene blue (MB) and crystal violet (CV) from aqueous solutions. Effective dye removal is crucial for water treatment, particularly for industrial wastewater containing toxic dyes. FAP, a naturally abundant material, was characterized using XRD, FTIR, and SEM analysis.

View Article and Find Full Text PDF

Electrospinning Membrane with Polyacrylate Mixed Beta-Cyclodextrin: An Efficient Adsorbent for Cationic Dyes.

Polymers (Basel)

January 2025

Institute of Textile Auxiliary and Ecological Dyeing Finishing, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

A simple and non-chemical binding nanofiber (-CD/PA) adsorbent was obtained by electrospinning a mixture of -cyclodextrin (-CD) and polyacrylate (PA). The cationic dyes in wastewater were removed by the host-guest inclusion complex of the -cyclodextrin and the electrostatic interaction between the polyacrylate and the dyes groups. The influence of the content of -cyclodextrin on the surface morphology and adsorption capacity of the nanofiber membrane was discussed, and the optimized adsorption capacity of nanofiber adsorption material was determined.

View Article and Find Full Text PDF

Removal of Malachite Green Dye from Aqueous Solution by a Novel Activated Carbon Prepared from Baobab Seeds Using Chemical Activation Method.

Molecules

January 2025

Department of Environment and Agricultural Natural Resources, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia.

Two activated carbons were synthesized from baobab seeds (BSs) using two activators, sulfuric acid (BS-AAC) and sodium hydroxide (BS-BAC), for dye removal from aqueous solutions. Malachite green (MG) was used as a model dye. SEM, FTIR, TGA, and surface area were used to characterize the feedstock and synthesis activated carbons.

View Article and Find Full Text PDF

Effluents containing synthetic anionic dyes can pose a risk to ecosystems, and they must be treated before their release to the environment. Biosorption, a simple and effective process, may be a promising solution for treating these effluents. In this work, chitosan beads were crosslinked with epichlorohydrin to produce a highly stable and performant biosorbent to remove Brilliant Blue FCF dye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!