A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Raman spectroscopy study on terephthalamide crystal at high pressures. | LitMetric

Raman spectroscopy study on terephthalamide crystal at high pressures.

Spectrochim Acta A Mol Biomol Spectrosc

State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, Jilin Province, People's Republic of China.

Published: October 2024

In this study, we have investigated the structural stability of terephthalamide (TPA) crystal at pressure from ambient to 15 GPa in the diamond anvil cell at room temperature by Raman spectroscopy. Assignment for the Raman vibration modes of TPA crystal at ambient conditions has been performed based on the density functional theory (DFT) calculations. Pressure-induced structural transition was monitored using in-situ Raman spectroscopy. Remarkable changes (including the appearance of new Raman peaks, disappearance of original Raman bands, discontinuous changes in the pressure dependence of some Raman wavenumbers at different pressures) in Raman spectra were observed at approximately 1.3 and 5.2 GPa, provided clear evidences for two pressure-induced phase transitions: phase I to phase II at ∼1.3 GPa, phase II to phase III at ∼5.2 GPa.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124525DOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
12
raman
8
tpa crystal
8
phase phase
8
phase
5
spectroscopy study
4
study terephthalamide
4
terephthalamide crystal
4
crystal high
4
high pressures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!