Genome-wide characterization and functional analysis of the melon TGA gene family in disease resistance through ectopic overexpression in Arabidopsis thaliana.

Plant Physiol Biochem

Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

Published: July 2024

TGA-binding (TGA) transcription factors, characterized by the basic region/leucine zipper motif (bZIP), have been recognized as pivotal regulators in plant growth, development, and stress responses through their binding to the as-1 element. In this study, the TGA gene families in melon, watermelon, cucumber, pumpkin, and zucchini were comprehensively characterized, encompassing analyses of gene/protein structures, phylogenetic relationships, gene duplication events, and cis-acting elements in gene promoters. Upon transient expression in Nicotiana benthamiana, the melon CmTGAs, with typical bZIP and DOG1 domains, were observed to localize within the nucleus. Biochemical investigation revealed specific interactions between CmTGA2/3/5/8/9 and CmNPR3 or CmNPR4. The CmTGA genes exhibited differential expression patterns in melon plants in response to different hormones like salicylic acid, methyl jasmonate, and ethylene, as well as a fungal pathogen, Stagonosporopsis cucurbitacearum that causes gummy stem blight in melon. The overexpression of CmTGA3, CmTGA8, and CmTGA9 in Arabidopsis plants resulted in the upregulation of AtPR1 and AtPR5 expression, thereby imparting enhanced resistance to Pseudomonas syringae pv. Tomato DC3000. In contrast, the overexpression of CmTGA7 or CmTGA9 resulted in a compromised resistance to Botrytis cinerea, coinciding with a concomitant reduction in the expression levels of AtPDF1.2 and AtMYC2 following infection with B. cinerea. These findings shed light on the important roles of specific CmTGA genes in plant immunity, suggesting that genetic manipulation of these genes could be a promising avenue for enhancing plant immune responses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108784DOI Listing

Publication Analysis

Top Keywords

tga gene
8
cmtga genes
8
melon
5
genome-wide characterization
4
characterization functional
4
functional analysis
4
analysis melon
4
melon tga
4
gene
4
gene family
4

Similar Publications

Introduction: 22q11.2 deletion is associated with conotruncal anomalies and immunological aberrations. Given the common embryonic origin of conotruncus and thymus, conotruncal anomalies may be associated with immunological aberrations irrespective of 22q11.

View Article and Find Full Text PDF

The current study established the first in vitro Encorafenib resistance protocol in BRAF-mutated malignant melanoma (MM) cells and investigated the resistance-related mechanisms. After establishing Encorafenib-resistant A375-MM cells, resistant-related mechanisms were investigated using WST-1, Annexin V, cell cycle, morphological analysis, live-cell, Western blot, RNA-Seq, transmission electron microscopy-(TEM), oxidative stress and iron colorimetric assay. The most resistant group, called A375-R, was determined in the cells treated with a constant dose of 10 nM over 3 months.

View Article and Find Full Text PDF

Cytological, Physiological, and Transcriptome Analysis of Leaf-Yellowing Mutant in .

Int J Mol Sci

December 2024

Jiangxi Provincial Key Laboratory of Oil-Tea Camellia Resource Cultivation and Utilization, Jiangxi Academy of Forestry, Nanchang 330032, China.

Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new variety 'Diecui Liuji' in terms of changes in its cell structure, pigment content, and transcript levels.

View Article and Find Full Text PDF

Chrysanthemum white rust (CWR), caused by Puccinia horiana Heen., is a serious disease of chrysanthemum worldwide. This disease reduces the quality and yield of Chrysanthemum morifolium, leading to significant losses for chrysanthemum growers and industries.

View Article and Find Full Text PDF

The continuous exposure of chemical pesticides in agriculture, their contamination in soil and water pose serious threat to the environment. Current study used an approach to evaluate various pesticides like Hexaconazole, Mancozeb, Pretilachlor, Organophosphate and λ-cyhalothrin degradation capability of esterase. The enzyme was isolated from Salinicoccus roseus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!