Heterogeneous brain distribution of bumetanide following systemic administration in rats.

Biopharm Drug Dispos

Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany.

Published: June 2024

Bumetanide is used widely as a tool and off-label treatment to inhibit the Na-K-2Cl cotransporter NKCC1 in the brain and thereby to normalize intra-neuronal chloride levels in several brain disorders. However, following systemic administration, bumetanide only poorly penetrates into the brain parenchyma and does not reach levels sufficient to inhibit NKCC1. The low brain penetration is a consequence of both the high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, and of brain efflux transport. In previous studies, bumetanide was determined in the whole brain or a few brain regions, such as the hippocampus. However, the blood-brain barrier and its efflux transporters are heterogeneous across brain regions, so it cannot be excluded that bumetanide reaches sufficiently high brain levels for NKCC1 inhibition in some discrete brain areas. Here, bumetanide was determined in 14 brain regions following i.v. administration of 10 mg/kg in rats. Because bumetanide is much more rapidly eliminated by rats than humans, its metabolism was reduced by pretreatment with piperonyl butoxide. Significant, up to 5-fold differences in regional bumetanide levels were determined with the highest levels in the midbrain and olfactory bulb and the lowest levels in the striatum and amygdala. Brain:plasma ratios ranged between 0.004 (amygdala) and 0.022 (olfactory bulb). Regional brain levels were significantly correlated with local cerebral blood flow. However, regional bumetanide levels were far below the IC (2.4 μM) determined previously for rat NKCC1. Thus, these data further substantiate that the reported effects of bumetanide in rodent models of brain disorders are not related to NKCC1 inhibition in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdd.2390DOI Listing

Publication Analysis

Top Keywords

brain
15
brain regions
12
bumetanide
10
heterogeneous brain
8
systemic administration
8
rats bumetanide
8
levels
8
brain disorders
8
bumetanide determined
8
determined brain
8

Similar Publications

Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.

View Article and Find Full Text PDF

Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Background And Importance: Traumatic intracranial hemorrhage (tICH) after mild traumatic brain injury (mTBI) is not uncommon in the elderly. Often, these patients are admitted to the hospital for observation. The necessity of admission in the absence of clinically important intracranial injuries is however unclear.

View Article and Find Full Text PDF

Increasing evidence suggests that inhibition of receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain-like pseudokinase (MLKL) necrosome has protective effects in vivo models of painful conditions seen in humans associated with inflammation and demyelination in the central nervous system. However, the contribution of RIPK1-driven necroptosis to inflammatory pain remains unknown. Therefore, this study aims to determine the effect of necrostatin (Nec) -1s, a selective RIPK1 inhibitor, on lipopolysaccharide (LPS)-induced inflammatory pain and related underlying mechanisms.

View Article and Find Full Text PDF

Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease.

Int J Geriatr Psychiatry

January 2025

Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!