Purpose Of Review: The goal of this paper is to aggregate information on monogenic contributions to obesity in the past five years and to provide guidance for genetic testing in clinical care.
Recent Findings: Advances in sequencing technologies, increasing awareness, access to testing, and new treatments have increased the utilization of genetics in clinical care. There is increasing recognition of the prevalence of rare genetic obesity from variants with mean allele frequency < 5% -new variants in known genes as well as identification of novel genes- causing monogenic obesity. While most of these genes are in the leptin melanocortin pathway, those in adipocytes may also contribute. Common variants may contribute either to higher lifetime tendency for weight gain or provide protection from monogenic obesity. While specific genetic mutations are rare, these segregate in individuals with early-onset severe obesity; thus, collectively genetic etiologies are not as rare. Some genetic conditions are amenable to targeted treatment. Research into the discovery of novel genetic causes as well as targeted treatment is growing over time. The utility of therapeutic strategies based on the genetic risk of obesity is an advancing frontier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13679-024-00567-y | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694263 | PMC |
Cancer Chemother Pharmacol
January 2025
Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.
The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified.
View Article and Find Full Text PDFmSphere
December 2024
Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.
Unlabelled: Thousands of complete genome sequences for strains of a species that are now available enable the advancement of pangenome analytics to a new level of sophistication. We collected 2,377 publicly available complete genomes of for detailed pangenome analysis. The core genome and accessory genomes consisted of 2,398 and 5,182 genes, respectively.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
Highly pathogenic avian influenza (HPAI) H5N1 is known for its virulence and zoonotic potential, infecting birds and mammals, thus raising public health concerns. Since 2021 its spread among birds has led to cross-species transmission causing epizootics among mammals, eventually impacting fur animal farms in Finland in 2023. To analyze the infectivity of the Finnish H5N1 isolates in human cells, representatives of diverse H5N1 isolates were selected based on the genetic differences, host animal species, and the year of occurrence.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts.
View Article and Find Full Text PDFJ Clin Invest
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center - Zhongshan School of Medicine.
Nasopharyngeal carcinoma (NPC) presents a substantial clinical challenge due to the limited understanding of its genetic underpinnings. Here we conduct the largest scale whole-exome sequencing association study of NPC to date, encompassing 6,969 NPC cases and 7,100 controls. We unveil 3 germline genetic variants linked to NPC susceptibility: a common rs2276868 in RPL14, a rare rs5361 in SELE, and a common rs1050462 in HLA-B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!