The asymmetry of membranes has a significant impact on their biophysical characteristics and behavior. This study investigates the composition and mechanical properties of symmetric and asymmetric membranes in giant unilamellar vesicles (GUVs) made of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidic acid (POPA). A combination of fluorescence quantification, zeta potential measurements, micropipette aspiration, and bilayer molecular dynamics simulations are used to characterize these membranes. The outer leaflet composition in vesicles is found consistent across the two preparation methods we employed, namely electroformation and inverted emulsion transfer. However, characterizing the inner leaflet poses challenges. Micropipette aspiration of GUVs show that oil residues do not substantially alter membrane elasticity, but simulations reveal increased membrane thickness and decreased interleaflet coupling in the presence of oil. Asymmetric membranes with a POPC:POPA mixture in the outer leaflet and POPC in the inner leaflet display similar stretching elasticity values to symmetric POPC:POPA membranes, suggesting potential POPA insertion into the inner leaflet during vesicle formation and suppressed asymmetry. The inverse compositional asymmetry, with POPC in the outer leaflet and POPC:POPA in the inner one yield less stretchable membranes with higher compressibility modulus compared with their symmetric counterparts. Challenges in achieving and predicting compositional correspondence highlight the limitations of phase-transfer-based methods. In addition, caution is advised when using fluorescently labeled lipids (even at low fractions of 0.5 mol %), as unexpected gel-like domains in symmetric POPC:POPA membranes were observed only with a specific type of labeled DOPE (dioleoylphosphatidylethanolamine) and the same fraction of unlabeled DOPE. The latter suggest that such domain formation may result from interactions between lipids and membrane fluorescent probes. Overall, this study underscores the complexity of factors influencing GUV membrane asymmetry, emphasizing the need for further research and improvement of characterization techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365108 | PMC |
http://dx.doi.org/10.1016/j.bpj.2024.05.031 | DOI Listing |
Int J Pharm
December 2024
Department of Medical BioSciences, Radboud University Medical Center, The Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain. Electronic address:
Messenger RNA is a highly promising biotherapeutic modality with great potential in preventive and therapeutic vaccination, and in the modulation of cellular function through transient expression of therapeutic proteins. However, for cellular delivery, mRNA requires packaging into delivery vehicles that mediate uptake and also shield the mRNA against degradation. Lipid-coated calcium phosphate (LCP) nanoparticles encapsulate the mRNA in a calcium phosphate core, which is coated by a bilayer of structural lipids, positively charged lipids and pegylated lipid to mediate cellular uptake and achieve colloidal stabilization.
View Article and Find Full Text PDFBrain Behav Immun
December 2024
Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China. Electronic address:
Prenatal virus infection-induced maternal immune activation (MIA) is linked to a greater risk of neurodevelopmental disorders in offspring. Prenatal exposure to poly(I:C) in pregnant mice is a well-established approach to mimic virus infection-induced MIA, leading to neuropsychiatric disorders and aberrant brain development, especially in the medial prefrontal cortex (mPFC). ATPase phospholipid flippase 8A2 (ATP8A2) is the main phospholipid lipase, expressed in the mPFC and is crucial for maintaining cell membrane stability by flipping phosphatidylserine from the outer leaflet to the inner leaflet of the cell membrane.
View Article and Find Full Text PDFInt J Biol Sci
December 2024
Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA.
In cells undergoing apoptosis phosphatidylserine, a major component of the plasma membrane, translocates to the outer leaflet where it provides eat-me signals for phagocytic recognition and is bound by annexin-V, an apoptotic marker. The need to track retinal ganglion cell death (RGC) in response to glaucomatous damage or optic neuropathy has led to the development of DARC (detection of apoptosing retinal cells) imaging, providing non-invasive, assessment of RGC death. Although the eye is an immune privileged site, resident and infiltrating immune cells are known to respond quickly to trauma or infection.
View Article and Find Full Text PDFLangmuir
December 2024
Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 São Carlos, SP, Brazil.
The design of chemotherapeutic drug carriers requires precise information on their interaction with the plasma membrane since the carriers should be internalized by cells without disrupting or compromising the overall integrity of the membrane. In this study, we employ Langmuir monolayers mimicking the outer leaflet of plasma membranes of healthy and cancerous cells to determine the molecular-level interactions with a water-soluble calixarene derivative, -sulfonic acid calix[4]arene (SCX4), which is promising as drug carrier. The cancer membrane models comprised either 40% 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC) or 1,2-dioleoyl--glycero-3-phosphocholine (DOPC), 30% cholesterol (Chol), 20% 1,2-dipalmitoyl--glycero-3-phosphoethanolamine (DPPE), and 10% 1,2-dipalmitoyl--glycero-3-phospho-l-serine (DPPS).
View Article and Find Full Text PDFSmoothened (SMO), a member of the G Protein-Coupled Receptor superfamily, mediates Hedgehog signaling and is linked to cancer and birth defects. SMO responds to accessible cholesterol in the ciliary membrane, translocating it via a longitudinal tunnel to its extracellular domain. Reaching a complete mechanistic understanding of the cholesterol translocation process would help in the development of cancer therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!