AI Article Synopsis

  • Multiple sclerosis (MS) is an autoimmune disease with unclear mechanisms, and this study aimed to identify key genes that could be used as biomarkers and treatment targets.
  • The analysis of a gene expression dataset revealed 266 differentially expressed genes (DEGs) in MS patients, with 183 upregulated and 83 downregulated, highlighting the B cell receptor signaling pathway as a key area of interest.
  • In clinical samples from 50 MS patients and 50 controls, several genes (CR2, BLK, BLNK, and RASGRP3) showed significantly higher expression in MS patients, indicating their potential as diagnostic biomarkers and therapeutic targets related to MS pathogenesis.

Article Abstract

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease and has adverse implications. The exact mechanism of its pathogenesis is not fully understood and remains to be elucidated. In the current study we aimed to identify key genes that can serve as potential biomarkers and therapeutic targets for MS and shed light on pathogenesis mechanisms involved in MS. We analyzed a gene expression dataset (GES21942) and found 266 differentially expressed genes (DEGs) including 183 upregulated and 83 downregulated genes in MS patients compared to controls. Then we conducted pathway enrichment on DEGs and selected the top enriched pathway i.e., B cell receptor signaling pathway, and 5 genes of this pathway (CR2, BLK, BLNK, RASGRP3, and KRAS) for further investigation in our clinical samples. We recruited 50 MS patients and 50 controls and assessed the expression of selected genes in the circulation of patients versus controls. Expression of CR2, BLK, BLNK, and RASGRP3 were significantly higher in MS cases compared with controls. There was no significant difference in expression of KRAS between patients and controls. All of the selected genes with differential expression had noticeable diagnostic power and CR2 was the most robust gene in differentiating MS cases from controls. Additionally, a combination of genes resulted in enhanced diagnostic power. Collectively our results suggest that the B cell receptor signaling pathway and the selected genes from this pathway may be implicated in the pathogenesis of MS and each of these genes can be considered as potential diagnostic biomarkers and therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.18502/ijaai.v23i2.15324DOI Listing

Publication Analysis

Top Keywords

cell receptor
12
receptor signaling
12
signaling pathway
12
selected genes
12
genes
10
pathway genes
8
multiple sclerosis
8
biomarkers therapeutic
8
therapeutic targets
8
compared controls
8

Similar Publications

Chimeric antigen receptor (CAR) T-cell products axicabtagene ciloleucel (axi-cel), tisagenlecleucel (tisa-cel), and lisocabtagene maraleucel (liso-cel) are approved for relapsed/refractory large B-cell lymphoma (R/R LBCL). Emerging evidence indicates that delayed CAR T-cell infusion, including prolonged time from leukapheresis to infusion, known as vein-to-vein time (V2Vt), may adversely impact clinical outcomes. We conducted a systematic literature review (SLR) and meta-analysis to identify differences in V2Vt in patients with R/R LBCL treated with axi-cel, tisa-cel, or liso-cel.

View Article and Find Full Text PDF

Purpose: We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities.

View Article and Find Full Text PDF

Sonodynamic therapy, a treatment modality recently widely used, is capable of disrupting the tumor microenvironment by inducing immunogenic cell death (ICD) and enhancing antitumor immunity during immunotherapy. Erdafitinib, an inhibitor of the fibroblast growth factor receptor, has demonstrated potential benefits for treating bladder cancer. However, Erdafitinib shows effectiveness in only a small number of patients, and the majority of patients responding positively to the medication have "immune-cold" tumors.

View Article and Find Full Text PDF

CBX2 suppresses interferon signaling to diminish tumor immunogenicity via a noncanonical corepressor complex.

Proc Natl Acad Sci U S A

February 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510050, China.

Chromobox 2 (CBX2), a crucial component of the polycomb repressive complex (PRC), has been implicated in the development of various human cancers. However, its role in the regulation of tumor immunogenicity and immune evasion remains inadequately understood. In this study, we found that ablation of CBX2 led to tumor growth inhibition, activation of the tumor immune microenvironment, and enhanced therapeutic efficacy of anti-PD1 or adoptive T cell therapies by using murine syngeneic tumor models.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!