Background: The SAVVY project aims to improve the analyses of adverse events (AEs) in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times and competing events (CEs). This paper summarizes key features and conclusions from the various SAVVY papers.
Methods: Summarizing several papers reporting theoretical investigations using simulations and an empirical study including randomized clinical trials from several sponsor organizations, biases from ignoring varying follow-up times or CEs are investigated. The bias of commonly used estimators of the absolute (incidence proportion and one minus Kaplan-Meier) and relative (risk and hazard ratio) AE risk is quantified. Furthermore, we provide a cursory assessment of how pertinent guidelines for the analysis of safety data deal with the features of varying follow-up time and CEs.
Results: SAVVY finds that for both, avoiding bias and categorization of evidence with respect to treatment effect on AE risk into categories, the choice of the estimator is key and more important than features of the underlying data such as percentage of censoring, CEs, amount of follow-up, or value of the gold-standard.
Conclusions: The choice of the estimator of the cumulative AE probability and the definition of CEs are crucial. Whenever varying follow-up times and/or CEs are present in the assessment of AEs, SAVVY recommends using the Aalen-Johansen estimator (AJE) with an appropriate definition of CEs to quantify AE risk. There is an urgent need to improve pertinent clinical trial reporting guidelines for reporting AEs so that incidence proportions or one minus Kaplan-Meier estimators are finally replaced by the AJE with appropriate definition of CEs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143657 | PMC |
http://dx.doi.org/10.1186/s13063-024-08186-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!