Background: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aβ)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology.
Methods: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aβ)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates.
Results: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity.
Conclusions: Our findings demonstrate that the LC can provide resilience against Aβ-related attention decline. However, when Aβ accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aβ-related cognitive decline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140954 | PMC |
http://dx.doi.org/10.1186/s13195-024-01485-w | DOI Listing |
Viruses
November 2024
Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania.
The COVID-19 outbreak, caused by the SARS-CoV-2 virus, was linked to significant neurological and psychiatric manifestations. This review examines the physiopathological mechanisms underlying these neuropsychiatric outcomes and discusses current management strategies. Primarily a respiratory disease, COVID-19 frequently leads to neurological issues, including cephalalgia and migraines, loss of sensory perception, cerebrovascular accidents, and neurological impairment such as encephalopathy.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.
Alzheimer's disease (AD) and Alzheimer's Related Dementias (ADRD) are projected to affect 50 million people globally in the coming decades. Clinical research suggests that Mild Cognitive Impairment (MCI), a precursor to dementia, offers a critical window of opportunity for lifestyle interventions to delay or prevent the progression of AD/ADRD. Previous research indicates that lifestyle changes, including increased physical exercise, reduced caloric intake, and mentally stimulating activities, can reduce the risk of MCI.
View Article and Find Full Text PDFToxics
December 2024
Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
Background: A limited number of studies have investigated the role of environmental chemicals in the etiology of mild cognitive impairment (MCI). We performed a cross-sectional study of the association between exposure to selected trace elements and the biomarkers of cognitive decline.
Methods: During 2019-2021, we recruited 128 newly diagnosed patients with MCI from two Neurology Clinics in Northern Italy, i.
Nutrients
December 2024
Internal Medicine Department, Hospital Universitario de Gran Canaria Dr. Negrín, 35010 Las Palmas de Gran Canaria, Spain.
Background/objectives: Malnutrition has been associated with increased morbidity and mortality in elderly patients diagnosed with heart failure (HF). However, nutritional problems are underdiagnosed in these patients. This study aimed to analyse malnutrition prevalence in elderly HF patients and its impact on survival.
View Article and Find Full Text PDFNutrients
December 2024
Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02218, USA.
Cognitive impairment in various mental illnesses, particularly neuropsychiatric disorders, has adverse functional and clinical consequences. While genetic mutations and epigenetic dysregulations of several genes during embryonic and adult periods are linked to cognitive impairment in mental disorders, the composition and diversity of resident bacteria in the gastrointestinal tract-shaped by environmental factors-also influence the brain epigenome, affecting behavior and cognitive functions. Accordingly, many recent studies have provided evidence that human gut microbiota may offer a potential avenue for improving cognitive deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!