Fruits are a very good source of various nutrients that can boost overall human health. In these days, the recovery of therapeutic compounds from different fruit wastes is trending in research, which might not only minimize the waste problem but also encounter a higher demand for various enzymes that could have antimicrobial properties against infectious diseases. The goal of this review is to focus on the recovery of therapeutic enzymes from fruit wastes and its present-day tendency for utilization. Here we discussed different parts of fruit waste, such as pulp, pomace, seed, kernel, peel, etc., that produce therapeutic enzymes like amylase, cellulose, lipase, laccase, pectinase, etc. These bioactive enzymes are present in different parts of fruit and could be used as therapeutics against various infectious diseases. This article provides a thorough knowledge compilation of therapeutic enzyme isolation from fruit waste on a single platform, distinctly informative, and significant review work on the topic that is envisioned to encourage further research ideas in these areas that are still under-explored. This paper explains the various aspects of enzyme isolation from fruit and vegetable waste and their biotherapeutic potential that could provide new insights into the development of biotherapeutics and attract the attention of researchers to enhance translational research magnitude further.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-024-03037-wDOI Listing

Publication Analysis

Top Keywords

fruit waste
12
recovery therapeutic
8
fruit wastes
8
infectious diseases
8
therapeutic enzymes
8
parts fruit
8
enzyme isolation
8
isolation fruit
8
fruit
7
waste
5

Similar Publications

The solid waste generated from processing rosehip fruits into jam is valuable due to its rich content in fibres, polyphenols, and carotenoids; it could be valorised as a functional ingredient in a powder form to enrich food products. This study aimed to test its potential as a value-added ingredient, especially to enrich waffle cones with fibres, polyphenols, and carotenoids. In this regard, four formulations of waffle cones were prepared by partially substituting wheat flour with rosehip waste powder at 0%, 10%, 15%, and 20%, reaching concentrations of 0%, 3.

View Article and Find Full Text PDF

The use of fruit by-products to develop new food products could be an advantageous approach to meet the demand for healthy foods and reduce food waste. In this study, the amino acid and mineral profiles of melon peel flour were evaluated. Non-essential/toxic elements were also determined.

View Article and Find Full Text PDF

The growing interest in a plant-based diet leads to the search for new sources of protein in the human diet as an alternative to animal proteins. Plant materials that can supplement protein as additives in food products are being studied. Watermelon seeds ( L.

View Article and Find Full Text PDF

Review on mushroom mycelium-based products and their production process: from upstream to downstream.

Bioresour Bioprocess

January 2025

Laboratory of Forest Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.

The global trend toward carbon neutrality and sustainability calls for collaborative efforts in both the basic and applied research sectors to utilize mushroom mycelia as environmentally friendly and sustainable materials. Fungi, along with animals and plants, are one of the major eukaryotic life forms. They have long been utilized in traditional biotechnology sectors, such as food fermentation, antibiotic production, and industrial enzyme production.

View Article and Find Full Text PDF

Platanus occidentalis L. fruit-derived carbon materials for electrochemical potassium storage.

Nanotechnology

January 2025

Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

In the post-lithium-ion battery era, potassium-ion batteries (PIBs) have been considered as a promising candidate because of their electrochemical and economic characteristics. However, as an emerging electrochemical storage technology, it is urgent to develop capable anode materials that can be produced at low cost and on a large scale to promote its practical application. Biomass-derived carbon materials as anodes of PIBs exhibit strong competitiveness by their merits of low weight, high stability, non-toxicity, and wide availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!