Background/aim: Apoptosis resistance in cancer cells adapted to acidic microenvironments poses a challenge for effective treatment. This study investigated the potential use of caffeic acid as an adjunct therapy to overcome drug resistance in colorectal cancer cells under acidic conditions.
Materials And Methods: Long-term exposure to low-pH conditions induced resistance in HCT116 colorectal cancer cells. The effects of caffeic acid on proliferation, clonogenicity, and apoptosis induction were assessed alone and in combination with oxaliplatin and 5-Fluorouracil. The signaling pathways involved in drug resistance were examined by assessing the activities of PI3K/Akt and ERK1/2.
Results: Caffeic acid inhibited the proliferation and clonogenicity of acid-adapted cancer cells, and enhanced apoptosis when combined with anticancer drugs. Mechanistically, caffeic acid attenuated the hyperactivation of the PI3K/Akt and ERK1/2 signaling pathways associated with drug resistance.
Conclusion: Caffeic acid is a promising therapeutic agent for targeting resistant cancer cells in acidic microenvironments. Its ability to inhibit proliferation, sensitize cells to apoptosis, and modulate signaling pathways highlights its potential for overcoming drug resistance in cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.17064 | DOI Listing |
Biochim Biophys Acta Bioenerg
January 2025
CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN) and caffeic acid (AntiOxCIN) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms.
View Article and Find Full Text PDFActa Pharm
December 2024
University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy 10000 Zagreb, Croatia.
Biowaste produced in urban parks is composed of large masses of organic matter that is only occasionally used economically. In this work, extracts of six plants widely distributed in urban parks in Central Europe (, , , , , and ), prepared using 10 % and 50 % ethanol, were screened for their antidiabetic and related properties. HPLC and UV-Vis analysis revealed the presence of caffeic acid, quercetin, luteolin, and apigenin derivatives.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Ethnopharmacology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India.
This study offers considerable information on plant wealth of therapeutic importance used traditionally by the residents of 11 villages under three subdivisions of Kurseong, Darjeeling Sadar, and Mirik in the Darjeeling District, West Bengal. For the acquisition of ethnomedicinal information, semi-structured interviews were conducted with 47 informants, of whom 11 persons were herbalists and 36 were knowledgeable persons. Free prior informed consent was obtained from each participant prior to the collection of field data.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, Crato 63105-000, Ceará, Brazil.
This study evaluated the antinociceptive effect of the L. bark extract (HEXA) and its primary component, caffeic acid (CA), through in vivo assays. : The antinociceptive properties were assessed using abdominal writhing, hot plate, and Von Frey tests.
View Article and Find Full Text PDFMolecules
December 2024
Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland.
Ethanolic extracts from the roots and aerial parts of the hitherto chemically uninvestigated lettuce species Willd. (Cichorieae, Asteraceae) were chromatographically separated to obtain eight sesquiterpenoids, two apocarotenoids (loliolide and (6,9) roseoside), and three phenolic glucosides (apigenin 7--glucoside, eugenyl-4---glucopyranoside, and 5-methoxyeugenyl-4---glucopyranoside). Four of the isolated sesquiterpene lactones (8--angeloyloxyleucodin, matricarin, 15-deoxylactucin, and deacetylmatricarin 8--glucopyranoside) have not previously been found either in spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!