The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient's constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases.

Download full-text PDF

Source
http://dx.doi.org/10.1302/0301-620X.106B6.BJJ-2023-1292.R1DOI Listing

Publication Analysis

Top Keywords

mechanical alignment
12
alignment
5
knees aim
4
aim mechanical
4
alignment total
4
total knee
4
knee arthroplasty
4
arthroplasty align
4
align knees
4
knees fixed
4

Similar Publications

Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure.

View Article and Find Full Text PDF

This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.

View Article and Find Full Text PDF

In response to the COVID-19 pandemic, a multidisciplinary team at the University of Kentucky developed an interdisciplinary science, technology, engineering, and mathematics and environmental health unit-the Wastewater Assessment for Coronavirus in Kentucky: Implementing Enhanced Surveillance Technology (WACKIEST) Unit-for high school students in summer 2022. This case study outlines the WACKIEST Unit, which focused on wastewater surveillance and COVID-19, the obstacles faced during development and recruitment, and implementation of the WACKIEST Unit in conjunction with a rural wastewater surveillance initiative. The unit was implemented in spring 2023 at a rural high school in Kentucky, spanning 12 days and engaging 190 students.

View Article and Find Full Text PDF

The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.

View Article and Find Full Text PDF

This study introduces an innovative approach to enhancing recycled aggregate concrete (RAC) by incorporating nanosilica (NS) and natural fibers (NF), specifically sisal fiber (SF) and palm fiber (PF). This novel combination aims to overcome the inherent limitations of RAC, such as reduced strength and durability, while promoting sustainability in construction. The research focuses on evaluating the mechanical properties of RAC, including compressive and flexural strengths, through the integration of NS and NF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!