Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Gleditsia sinensis Lam. pods (GSP) are consistently discarded as waste after saponin extraction due to a lack of industrial or high-value utilization. Herein, the hemicelluloses were extracted from two varieties of GSP and subjected to comprehensive characterization. The molar mass of DMSO-soluble hemicelluloses (53.3-66.0 kDa) was higher compared to that of alkali-soluble ones (24.9-32.6 kDa). The presence of minimal acetyl substitution (3.85-4.49 %) on xylan was unequivocally confirmed. NMR spectroscopic analysis indicated that the hemicelluloses in GSP predominantly consist of a 1,4-β-ᴅ-Xyl backbone with arabinose substituents at O-3 and 4-O-methyl-α-ᴅ-GlcA substituents at O-2 of the xylose residues. p-Coumaric acid substitution also occurred on the 1,4-β-ᴅ-Xyl backbone. Hydrothermal treatment significantly reduced the hemicelluloses' relative molar mass and produced 7-10 % xylo-oligosaccharides. Furthermore, the moderately degraded hemicelluloses exhibited significantly enhanced biological activity. Finally, the incorporation of the moderately degraded hemicelluloses imparted the galactomannan film with exceptional antioxidant properties (81.1 % DPPH scavenging activity), while negligibly affecting its transparency. Our study's findings will contribute to a comprehensive understanding of the structural and biochemical properties of hemicellulose in waste G. sinensis pods, thereby facilitating their enhanced utilization in industrial applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!