Insects are frequently infected with heritable bacterial endosymbionts. Some of them confer resistance to parasitoids. Such defensive symbionts are sensitive to variation in temperature. Drawing predominantly from the literature on aphids and flies, we show that temperature can affect the reliability of maternal transmission and the strength of protection provided by defensive symbionts. Costs of infection with defensive symbionts can also be temperature-dependent and may even turn into benefits under extreme temperatures, for example, when defensive symbionts increase heat tolerance. Alone or in combination, these mechanisms can drive temperature-associated (latitudinal) clines of infection prevalence with defensive symbionts. This has important consequences for host-parasitoid coevolution, as the relative importance of host-encoded vs. symbiont-provided defenses will shift along such clines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cois.2024.101208 | DOI Listing |
Commun Biol
January 2025
University of Chinese Academy of Sciences, 10049, Beijing, China.
Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.
View Article and Find Full Text PDFUnlabelled: Members of the gut microbiome encounter a barrage of host- and microbe-derived microbiocidal factors that must be overcome to maintain fitness in the intestine. The long-term stability of many gut microbiome strains within the microbiome suggests the existence of strain-specific strategies that have evolved to foster resilience to such insults. Despite this, little is known about the mechanisms that mediate this resistance.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.
View Article and Find Full Text PDFAnim Microbiome
January 2025
School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA.
Background: Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea.
View Article and Find Full Text PDFSuccessful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!